On the possible FLake model ecological applications

by

Sergey Golosov¹⁾, Katerina Shipunova¹⁾, Ilia Zverev¹⁾, Arkadiy Terzhevik²⁾, Georgiy Kirillin³⁾, Cristoff Engelhardt³⁾ and Dmitriy Mironov⁴⁾

- 1) Institute of Limnology RAS (St-Petersburg)
- 2) Northern Water Problems Institute RAS (Petrozavodsk)
- 3) Institute of Freshwater Ecology and Inland Fisheries (Berlin)
- 4) German Weather Service (Frankfurt-on-Main)

OUTLINE

- FLake as the base of ecological model FLakeEco
- FLake and FLakeEco as "ideological twins"
- Feedbacks between FLakeEco and FLake
- Future trends in FLakeEco development

Output parameters of the FLake model

I(z,t) – incoming solar radiation

QS, **QD** –surface and water – bottom heat fluxes

U* – friction velocityat the water surface

T(*z*,*t*) – temperature profile

h,(D-h) – mixed layerand hypolimnion thickness

t ice and l ice - duration of ice-covered period and ice thickness

Ecosystem processes in the FLakeEco

PP – phytoplankton primary production

ME – mass exchange at the boundaries

ME – mass exchangewithin the water column

BR – biochemical reactions

SD – spatial distribution of populations

OD, *PP* – oxygen depletion and primary production in winter

Basic parameterizations of the Flake model

Functions f_1 , f_2 , f_3 should be experimentally defined

Ecological applications of the FLake ideology

Typical vertical distribution of "admixture" concentration

Parametrical representation of the profile

FLake based solution of the equation of non-conservative admixture transfer

Annual dynamics of DO concentration in lakes

Typical distribution (data from summer 2003 field campaign In Lake Vendyurskoe (Russia)

The profile parameterization

$$C(z,t) = \begin{cases} C_S & \text{within the mixed layer} \\ C_S - (C_S - C_D) f_{DO}(\frac{z - h}{D - h}) & \text{below the mixed layer} \end{cases}$$

within the mixed layer

Results of modeling, Lake Krasnoye, (Russia, 1970) Open water case

Mixed layer temperature (from FLake model)

DO distribution dynamics

Results of modeling, Lake Vendyurskoe, (Russia, 2002) **Ice-covered case**

Temperature and ice from FLake model

80

60

Development of anoxic zone at 11.5 m depth

- DO concentration
- Anoxic layer thickness Modeled results

Annual dynamics of Dissolved Inorganic Phosphorus (DIP) in lakes

Typical distribution (data from summer 1970-71 field observations in Lake Krasnoye (Russia)

The profile parameterization

$$C(z,t) = \begin{cases} C_S & \text{within the mixed layer} \\ C_S + (C_D - C_S) f_{DIP}(\frac{z - h}{D - h}) & \text{below the mixed layer} \end{cases}$$

within the mixed layer

Results of modeling, Lake Krasnoye (1970)

The DIP concentration in the lake's upper mixed layer (a) and in the upper sediments (b)

On the possible feedbacks between FLakeEco and FLake (effect of transparency decrease)

Light extinction variability strongly impacts the lake thermal and mixing regime

Seasonal variability of light extinction

Constant γ could be a source of poor modeling results (mixing over- or underestimation)

Primary production should be taken into account as a source of transparency variability at the lake thermohydrodynamics modeling

Scheme of the feedbacks

Future trends in FLakeEco development

- To test the FLakeEco against data from lakes of wide range of trophic state
- Further development of biochemical module of the model (multi species phytoplankton community, widening of the nutrient variables list, etc.)
- Taking into account presence of feedbacks between FLake and FLakeEco to develop a single whole computer code for both models

Thanks for your attention,

Mesotrophic Lake Krasnoye, Karelian Isthmus, Russia, 60 °N

Eutrophic Lake Müggelsee, Berlin, Germany, 53 °N

Olygotrophic Lake Sparkling, Northern America, 46 °N

Kiel 2005