An effective lake depth for FLAKE model

Gianpaolo Balsamo, Emanuel Dutra, Victor Stepanenko, Pedro Viterbo, Pedro Miranda and Anton Beljaars

Usei Dam

thanks to:

Dmitrii Mironov, Arkady Terzhevik, Yuhei Takaya, Ekaterina Korzeneva and Netfam

Lake NWP Workshop, 18/09/2008 St. Petersburg, Russia

Loke Scher

OUTLINE

Introduction

- Lake in global models

FLAKE model in HTESSEL

- Offline model runs
- Observational dataset

• The lake depth issue

- How important is lake depth for modelling T and LE/H?
- A possible solution
- Tuning the lake depth
 - a "simplified variational" method
 - Preliminary results
- Conclusions

Land and Inland water bodies modelling

Introduction

Lake in global models are necessary to

- correctly represent surface boundary conditions in NWP systems (forecast + data assimilation):
 - Albedo (e.g. freezing lakes)
 - Thermal capacity (linked to mass)
 - Evaporation
 - Soil moisture (what happens now when lakes are missing?)
 - SMOS (2009) microwave signal will sense land+water bodies and need to be modelled!

• The lake schemes for NWP need to be

- Simple(&fast), Constrained:
 - Reduced set of equations that can represent lake daily/seasonal/inter-annual variability (the Land surface scheme are generally designed in this way)
 - Simplified hydrology: lake hydrology is too sophisticated to be fully represented in current GCM at 20-200 km resolution
 - Reduced set of parameters and variables that can be initialized also on global domain (e.g. Satellite observations to be used to constrain/initialize)
 - Numerically stable and physically sound at all latitudes.

ECMWF

LAKEs in NWP: current state at ECMWF

Lake "Maggiore" is largely subgrid and basically absent in the ECMWF deterministic forecast model and it will remain subgrid due to its elongated shape. This is the wettest area in Italy with 1.8 m annual precipitation (mechanisms concurring are water uptake from the lake and orography enhancement)

		- ALAN		Des b	2 × 100	- CAUNE	· ··· /	Surface area [km2]	213
	1 Still	11-0	134	1 de la	- SATA	C. SUI		Volume [km3]	37.5
	PARTA TA		2. 4		8 8 8	ARA	1.8%	Maximum depth [m]	370
A A COM THE	Contra 4				114	A NA	1	Mean depth [m]	176.5
A States	1 Anno		ST. T.		C A	Co 21	8. 2	Water level Unregulate	d
The states					SP-4		1	Length of shoreline [km	ı] 170
				Fri a	A COL			Catchment area [km2]	6,387
	1. 1. 6.	1	*==*	5.	1	a start a	PVGIS	European Communities, 2001-2007	

LAKE models for NWP

 At ECMWF the FLAKE (Mironov, 2003, DWD, 1D shallow lake model) is considered for implementation

- Kourzeneva E. and Braskavsky D. (2006) : "Depth of a lake is the main parameter to which model is sensitive..."
 - for 16 40 m deep lakes: annual cycle amplitude changes for 1 K when depth changes for 3 m;
 - for 7 16 m deep lakes: annual cycle amplitude changes for 1 K when depth changes for 2 m;
 - for 1 7 m deep lakes: annual cycle amplitude changes for 1 K when depth changes for 1 m.

FLAKE coupled to HTESSEL

- Thanks to E. Dutra, V.
 Stepanenko, P. Viterbo, P.
 Miranda
- A new tile (n=9) for sub-grid lakes is present
- Technically validated (if CLAKE=0. the model is bitidentical).
- Scientific validation (see presentation of Dutra et al., 2008)
- No snow on top of the ice

Variable	GRIB shortn ame	GRIB code.table
LAKE DEPTH	DL	7.228
LAKE MIX-LAYER TEMPERATURE	LMLT	8.228
LAKE MIX-LAYER DEPTH	LMLD	9.228
LAKE BOTTOM TEMPERATURE	LBLT	10.228
LAKE TOTAL LAYER TEMPERATURE	LTLT	11.228
LAKE SHAPE FACTOR	LSHF	12.228
LAKE ICE TEMPERATURE	LICT	13.228
LAKE ICE DEPTH	LICD	14.228

LAKE depth in FLAKE

- Lakes in a global NWP model need approximations.
- Full knowledge of the lake is necessary for field site experiment but at global scale might be a "mirage" (E.g. turbidity, bottom sediments, and also lake depth are not globally available).
- Even knowing most of the lakes parameters, lakes are still dynamical (e.g. inflow cold water from rivers, variable hydrometric levels).
- The main target of lake modelling in NWP is to be able to reproduce lake surface temperatures LSTs (and evaporation).
- Question: Can we then use observed LSTs to infer lake unknown parameters (and particularly lake depth)?
- Satellite SSTs dataset often can observe lakes (e.g. MODIS SSTs products, at 4km resolution)

LAKE depth in FLAKE (II)

- 0) Use a "state of the art" atmospheric forcing (ERA-Interim) to drive a validated model HTESSEL+FLAKE
- 1) Use "Perpetual-year" simulations allowing the model prognostic variables to reach an equilibrium. (We can assume that is the "Model climatology")
- 2) Use a satellite-based SSTs climatology to compare with lake surface temperature in the model.
- 3) Repeat the procedure from 1) with a different lake depth.
- This procedure is similar to a variational technique and it can be written as a cost function J for which the optimized lake depth is obtained from grad J =0

Optimized single point LAKE depth

• The cost function J can be written as

J = Jo + Jb

In our case we do not consider a Jb term as we do not have a reliable guess for the model lake depth

J=1/2* [(LST(h_I)-SST_o)/sig_obs]**2

With h_I being the lake depth

Datasets

- From the original dataset (E. Kourzeneva)
- 48 Eurasian lakes have been selected for this study
- More than 80% available obs (8-daily LSTs)
- Mean and Max depth

Lake NWP Workshop,	18/09/2008 St.	Petersburg, R
--------------------	----------------	---------------

	mean	i and m	aximum	depth (d	mean, dr	ax), and	surface (A). Lakes with A >
	100ki	m ² and	> 80% \	valid satel	lite obser	vations ar	e considered.
	n	lat	lon	dmean	dmax	A	name
	1	63.12	25.67	6.50	66.20	502.00	Nameless
	2	62.80	29.72	11.80	58.60	279.70	HoooytiSinen
	3	66.16	28.73	4.60	42.00	240.20	Yli-Kitka
	4	62.60	26.54	10.80	56.00	186.90	Konnevesi
	5	62.97	30.79	10.80	47.40	169.60	Koitere
	6	62.82	26.98	17.20	34.50	164.90	lisvesi
	7	63.09	25.16	8.40	45.00	156.20	Kivijarvi
	8	60.99	22.32	5.50	26.20	154.00	PyhSjarvi
	9	65.03	29.11	21.50	43.00	152.70	Kiantajarvi (N43 199.30)
	10	62.72	29.30	6.00	58.30	135.40	Viinijarvi
	11	64.13	29.19	14.50	29.00	102.00	Ontojarvi-Nurmesjarvi
	12	63.30	25.74	8.70	66.00	101.30	Kolima
	13	61.98	35.22	30.00	120.00	9690.00	ONEZGSKOE
	14	58.12	38.67	5.60	30.40	4550.00	VDHR BYBINSKOE
	15	58.02	28.07	7.10	16.60	3512.00	CHUDSKO-PSKOVSKOE
	16	63,60	34.60	7.40	20.50	1270.00	VDHB VYG0ZEBSKOE
	17	58.35	31.63	2 70	4 50	1110.00	IL MEN
	18	65.70	32.00	16.00	56.00	986.00	TOPOZEBO (VDHB KUMSKOE)
	10	51.00	30.50	4.00	18.40	922.00	VDHR KIEVSKOE
	20	67.03	32.07	12.80	67.00	876.00	IMANDRA
	21	63.17	32.07	20.00	103.00	815.00	VDHD SECOZEDSKOE
	20	65.05	31.53	11.00	26.00	655.00	
	22	60.00	31.37	6.00	10.00	633.00	VURN TUSHKUZENSKUE
	23	62.00	36.99	2.20	18.00	367.00	
	24	60.20	30.00	1.90	5.60	367.00	
	20	67.55	34.33	57.50	115.00	331.00	
	20	61.00	34.33	57.50	04.00	313.00	CIMB-02ERU SVAMOZERO
	21	59.00	33.32	0.50	24.00	200.00	VYDTOVADY
	20	00.30	20.00	2.50	5.60	259.00	VTRISTARV
	29	64.95	30.55	8.50	44.00	240.00	VERHNEE KUJIU
	30	67.98	35.08	5.70	35.00	223.00	LUVUZERU
	31	66.05	31.80	8.00	41.00	209.00	TIKSHEUZERU
	32	61.00	31.00	10.20	57.00	200.00	VDHR YANISYARVI
	33	62.60	33.75	9.50	58.00	185.00	VDHR SANDALSKOE
	34	63.83	30.82	8.50	34.00	166.00	LEKSOZERO
	35	59.70	39.30	1.30	2.00	166.00	KUBENSKOE
	36	65.78	33.93	4.50	18.00	122.00	ANGOZERO
	37	62.52	33.67	18.50	74.00	109.00	PALE (VDHR PALZERSKOE)
	38	53.48	12.44	6.60	28.10	102.70	Muuuritzddot davon Auenmuuurit
	39	53.37	-9.09	5.00	46.00	173.80	Corrib
	40	52.92	-8.33	7.60	36.00	117.50	Derg
	41	60.50	10.36	65.50	131.00	140.10	Randsfjorden
	42	53.74	21.75	5.80	23.40	113.40	SHNIARDWY
	43	61.83	35.33	30.00	120.00	9890.00	Onego
	44	58.90	13.25	27.00	106.00 1	5648.00	Vanern
	45	58.32	14.56	39.90	128.00	1856.00	Vattern
	46	59.52	17.03	11.90	61.00	1140.00	Malaren
F	47	59.22	15.77	6.10	22.00	478.00	Hjaelmaren
	48	54.60	-6.50	8.90	34.00	385.00	Lough Neagth

Table 1: Eurasian lakes dataset v1.0 by (E. Kourzeneva): n, latitude, longitude,

Preliminary results (I: unfrozen lakes)

 Lake n. 40) "Derg" <u>link</u> Lat 52.92 Lon -8.33 Mean depth 7.60m Max depth 36.0m Area 117.50 Km²

Preliminary results (II: frozen lakes)

 Lake n. 5) "Koitere" Lat 62.97 Lon 30.79 Mean depth 10.80m Max depth 47.40m Area 169.69 Km²

Optimized multiple-point LAKE depth (the next step for large lakes)

Back to cost function J

```
J = Jo + Jb
```

In case of large lakes spatial correlation in the lake depth can be assumed therefore a Jb term Is obtained by the neighbouring lake points

Large lakes (III: frozen lakes) ...with a bit of speculation

Supposing a "typical" lake bathymetry. Can we obtain a reasonable evolution of ice formation?

Depth (m)	FLAKE unfrozen (days)	Unfrozen days (from SSTs) diff
5	136 days	(210) 74
50	198 days	12

First results suggest that we may get a built in of ice from lakes borders into lake inner parts (although neglecting circulation and more sophisticate treatments).

Verification Strategy

CONCLUSIONS

FLAKE model in HTESSEL

- Implemented in cycle 33R1 offline for research
- Observational dataset SST from TERRA

• The lake depth issue

- How important is lake depth for modelling T and LE/H?
- Lake depth dataset are useful for local validation but a pragmatic approach with a d_eff is a proposed way for global implementation

Coupling with the atmosphere

- Fixed depth approximation
- FLAKE will be pre-operational after IFS cycle 35 (winter '08) for impact studies.
- Ocean mixed layer model (SST/SSS profiles) complete surface modelling component

OUTLOOK

- Atmospheric reanalysis projects (ERAI, JRA, ERA40, NCEP-DOE) are comprehensive and extremely valuable for land/lake offline studies.
- Introduce snow on top of the lake to remove the large bias.
- Extend to 2D simulations the lake depth tuning methodology to build an "effective lake depth" dataset and compare with available datasets (e.g. E. Kourzeneva, v1.0, bathymetry datasets: Great Lakes).
 - Can we get something the looks like bathymetry and can time ice/lst?
 - Coordinated efforts may get us to build a global dataset at given resolution (0.5/0.25 degree)?
- An Earth-surface system modelling including Land-Lakes-Ocean with associated EO data assimilation may allow testing of several LSMs (2-3 order of magnitude less expensive in terms of computational cost therefore opens up research avenues!):
 - resolution increase
 - sophisticated data assimilation systems (e.g. Ensemble Kalman Filters)
 - extensive testing/tuning (e.g. 50-years hindcasts)

Thank you for attention

QuickTime™ and a decompressor are needed to see this picture

An ocean mixed layer model in IFS

Yuhei Takaya

- A nonlocal K-profile model (KPP), Large et al. 1994)
- 1-D column model (source from Woolnough et al. 2007).
- Bulk model with parameterizations of the shear instability mixing, internal wave breaking and double diffusion.
- High resolution near the surface with stretch vertical grid arrangement (top layer ~1 m)
- Air-sea interaction (SST/SSS profiles)
- Diurnal cycle of SST (only with res.) \rightarrow

TOGA-COARE experiment

Stretched grid (29 layers in 200 m, top layer ~ 1.5 m)

Red: Observation Grey: Model

KPP model is forced with TOGA-COARE observation data.

Initial condition is given from the ECMWF ocean analysis.

A draft roadmap to global

For discussion purposes

- 1) Survey of suitable global SSTs climatology including lakes
- 2) Interpolation onto target lake map (CLAKE>0.)
- 3) Apply on both grid and sub-grid scale lakes the tuning method
- 4) Check in offline runs.

