

gobierno De españa

DE MEDIO AMBIENTE Y MEDIO RURAL Y MARINO

MUSC EXPERIENCES AT AEMET

Hirlam-B working days on HARMONIE-MUSC 29.11 - 2.12.2011, Helsinki

Daniel Martín Javier Calvo

+ +

+

+

+

+

+ +

+ +

+ +

+

-

+ +

+ +

+ +

+ +

MINISTERIO DE MEDIO AMBIENTE Y MEDIO RURAL Y MARINO

+

+ +

+ +

+ +

+ +

+ +

+ +

+ +

+ +

+ +

+ +

+

+

+ +

2

+

1. INSTALLATION OF MUSC35t2 AT AEMET

2. NOTES on CONFIGURATION and EXECUTION

3. CUMULUS CASE: ARM (21/06/1997)

-

<u>4. CONTINENTAL DEEP CONVECTION CASE: ARM (27-28/06/97)</u>

www.aemet.es

-

+

+ +

+ +

+ +

+ +

+ +

+ +

+ +

+ +

+

- -

+

STALLATION

+ + - MUSC 35T2 version provided by Eric Bazile

Main version of HARMONIE and test version with MUSC routines.

ascii2fa and surfex code to generate initial conditions file and surface(.lfi,.des) files.

- + + Installed in Linux BladeFrame server
- + + Compilation utility **gmkpack** of Harmonie 36h13
 - GMKFILE=GFORTRAN.LINUX (Harmonie config: LINUX)
- $_{\perp}$ $_{\perp}$ MPL (Message Passing Library) library was used instead of MPI (Message Passing Interface)

+ +

- -

Compilation problems (local prolems) 1. INSTALLATION. Compilation problems * The file *lex.l* was substituted by the one of version 33h1

+

+ +

+ +

+ +

+ +

+ +

+ +

+ +

+ +

+ +

+ +

+ +

+ +

+ +

- * Segmentation fault problem in *bator init mod.F90* (a loop is changed)
- + + * Minor problems in *fltbgvarens.F90, suphy2.F90*, + +new thin radar.F90

+ + As MPL library was used instead of MPI.

+ +

+ +

- + +* Error message: ABORT called by mpi_init_thread_()@mpi_serial.c + +due to MPI routines being called when they are not going to be used.
 - * Changes in *mpl init mod.F90* (xrd/module) and *sumpini.F90* (arp/setup) are needed.
 - * Variable LMPOFF = TRUE in namelist NAMPARO when running an experiment

MUSC version 37t1 was sucessful installed in the same server witchnempi libraries. 30/11/2011

CONFIGURATION

2. NOTES on CONFIGURATION and EXECUTION +The Initial state is obtained from an ascii – –file * ascii \$CASE → FA_\$CASE +* ascii2fa code was used. * Error message: SURFAEROS.SEA MISSING FROM ARPEGE FILE A new variable was added to the ascii file: AEROS.SEA 6.200E-3 +The routine *acadfa1D main.F90* needed to be + - modified in order to read the new variable 30/11/2011

NAM1D FLEV=79, ZDELY=250000., _NHDYN=.FALSE., _ALAPHYS=.T., _REASUR=.T., NFORC=14 _QCGRP = .T. _QIGRP = .F. _QRGRP = .F. _QSGRP = .F. _QSGRP = .F. _CFGRP = .F. _SRCGRP = .F. _TKEGRP = .T. YEAR=1992 MONTH=6 DAY=13 HH=00 MIN=00	ETA vah 0.000000 0.000000 1.99999999E-04 ATMOSPHERE zorog 0.000000 ps (hPa) 97000.00
+ + + + + + + + + + + + + + + + + + +	+ + + + + + + + + + + + + + + + + + +

Surface files

+ +

+ +

+ +

+ +

+ +

+ +

+ +

+ +

 $^+$ $^+$ To create the surface files, two programs were needed. The code is in two folders:

> PREP PGD AROME (pgd exe or PGDmusc). Libmse.new.a is built. (Folder: updatelibs) PRE SURF AROME (prepsurf exe, PREPsurfex)

+ +

+ +

+ +

+ +

+ +

+ +

+ +

+ +

+ +

+ +

+ +

+ +

+ +

+ +

+ +

<u>Makefile files needed to be modified in order to link</u> libraries of the main HARMONIE

+ + The exe files read the surface namelist and generate the surface files (.lfi,.des)

+ - 26/01/2008

AEMET. Agencia Estatal de

+ +

+ +

+ +

+ +

+ +

+ +

+ +

+ +

+ +

+ +

+ +

+ +

+ +

+ +

Surface files Namelist:

PRE_REAL1_\$CASE:

```
&NAM_FILE_NAMES HPGDFILE ='AROME_PGD' , CINIFILE='AROME_PREPSURF' /
```

```
&NAM_PREP_SURF_ATM NYEAR=1997, NMONTH=6, NDAY=21, XTIME=41400./
```

```
&NAM_PGDFILE CPGDFILE='pgd_ideal' /
```

PRE_PGD1_\$CASE:

&NAM_PGD_SCHEMES CNATURE='FLUX' , CSEA='NONE' , CWATER='NONE' , CTOWN='NONE' / &NAM_PGD_GRID CGRID='CARTESIAN' /

&NAM_CARTESIAN XLAT0=36.605 , XLON0=-97.485 , NIMAX=1 , NJMAX=4 , XDX=250000. ,

XDY=250000. /

&NAM_COVER XUNIF_COVER(4)=1. /

&NAM_ZS XUNIF_ZS=0. /

```
&NAM_FRAC LECOCLIMAP=.TRUE., XUNIF_SEA=0., XUNIF_WATER=0.,
```

XUNIF_TOWN=0.,XUNIF_NATURE=1/

EXEG.nam

&NAM_SURF_ATMn /

&NAM_ISBAn /

&NAM_DIAG_SURFn LSURF_BUDGET=.TRUE., N2M=2 /

&NAM_DIAG_ISBAn LSURF_EVAP_BUDGET=.TRUE., LSURF_MISC_BUDGET=.TRUE., LPGD=.TRUE. /

+ 26/01/2008

AEMET, Agencia Estatal de

2. CONFIGURATION

+ +

+ +

+ +

+ +

+ +

+ +

+ +

+ +

+ +

+ +

+ +

+ +

+ +

+ +

<u>Namelist</u>

+ +

+ +

+ +

+ +

+ +

+ +

+ +

- * Mainly **convection cases** have been studied. The different configurations used have been obtained by giving different values to switches and variables:
 - * NAMARPHY: LKFBCONV, LKFBD, LKFBS, LMFSHAL
 - * NAMPARAR: CMF_UPDRAFT (EDKF, DUAL), CMF_CLOUD (DIRE, STAT)
 - \ast NAMCVMNH: OTADJS, OTADJD (user specified time step to call shallow and deep convection)
- * Convective variables contained in routine **ini_convpar.mnh** were not modified.

<u>Outputs</u>

* In order to get ascii files from the outputs, "gl -scum" was used (gl from Harmonie 33h1) on the "ICMSHAROM+" files

+ +

+ +

- -

+ +

+ +

+ +

+ +

+

+

+ +

+ +

+ +

+ +

+ +

+ +

+ +

+ +

+ +

+ +

+ +

+ +

+ +

- * <u>Surface fluxes</u>. Temperature and humidity surface fluxes are included in the routine mse/internals/init_ideal_flux.mnh
- IS THERE ANY OTHER WAY TO CHANGE THE SURFACE FLUXES?
- Large scale forcing are added in the ascii file containing the initial profiles and the namelist nam1D.
- + + Modifications in namelist: NAMGFL: NGFL_FORC=24, YFORC_NL(1)%CNAME='FORC001',... NAMLSFORC: time and type of the tendency.

www.aemet.es

+ + + + + + + + + + +

3. CUMULUS CASE: ARM(21/06/1997) - ARMCU

- * The ascii file with initial conditions and large scale forcing was already prepared. And no chages were needed as the surface flux + + included in the model corresponded with the one of this case.
- * The main purpose of running this experiment was to get some experience with the model.
- * Shallow Convection case of 21st June 1997 from observations of the 1997 Single Column Model Summer IOP and studied for the project EUROCS (2002).
 - * Description of the case and results of the LES model:
 - http://www.knmi.nl/samenw/eurocs/ARM/index.html

+ + + + +

+

-

+

+

-

+

+

+ +

3. CUMULUS CASE

+

+

+ +

+ +

+ +

+

+

+ +

GOBIERNO DE ESPAÑA

- MUSC35t2 has been run for the test case with AROME physics (LAROME)
- Three different configurations have been used: EDKF, KFBS, DUAL

At AEMET:

- Time step: 60 seconds.
- 79 levels.
- The results have been compared with the ones obtained with the

| | LE | Sr | no | del | LK | FB | CON | IV | LK | FBI | D | L | KFE | BS | I | LMFSHAL | | | | CMF_UPDRAFT | | | | |
|------|------------------------|----|----|-----|----|----|-----|----|----|-----|---|---|-----|----|---|---------|---|---|---|-------------|---|---|---|---|
| | | ED | KF | | | F | - | | | F | | | F | - | | т | | | | EDKF | | | | |
| | | DU | AL | | | F | = | | F | | | | F | | | т | | | | DUAL | | | | |
| | | KI | FB | | Т | | | | | F | | | т | | | F | | | | EDKF | | | | |
| + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + |
| + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + |
| 30/1 | 0/11/2011 www.aemet.es | | | | | | | | | | | | | | | | | | | | | | | |

3. CUMULUS CASE

Comparison of cloud water at 21:30 UTC 21/06/1997.

- * MUSC35t2: Three configurations (EDKF, EDMF, KFBS) and LES
- * Models and LES used for EUROCS project.

30/11/2011

www.aemet.es

12

- * A case study based on the GCSS WG4 Case 3 intercomparison project, Diurnal Cycle of Precipitating Deep Convection Over Land. (EUROCS Project)
- * link: <u>http://www.cnrm.meteo.fr/gcss/EUROCS/deepdiurnland.html</u>

- * The data has been collected from webpage <u>/data/campaigns</u>
- * Summer Single Colum Model IOP
 (Intensive operation period)
 documentation downloaded from the webpage
 *Files: *layer_9706.dat*, *surface_9706.dat*,
 Info files and fortran programs.

30/11/2011

4. DEEP CONVECTION CASE

The file (layer_9706.dat) contains data every 3h, 35 levels and the variables:

Length of each field

- Number of pressure levels (35)
- + Pressure levels (mb)

Time (Calendar day)

Year

Month

Day

Hour

Minutes

Number of multilevel fields (19) Temp_(K) H2O_Mixing_Ratio_(g/kg) u_wind_(m/s) v_wind_(m/s) omega_(mb/hour)

Wind Div (1/s) Horizontal_Temp_Advec_(K/hour) Vertical_T_Advec(K/hour) Horizontal_q_Advec_(g/kg/hour) *Vertical q Advec(g/kg/hour)* s(Dry Static Energy)(K) Horizontal s Advec (K/hour) Vertical_s_Advec(K/hour) ds/dt(K/hour) DT/dt(K/hour) dq/dt_(g/kg/hour) Q1 (k/hour)Q2_(g/kg/hour) ARSCL Cld

30/11/2011

www.aemet.es

+

+

+

+

GOBIERNO DE ESPAÑA Y MEDIO RU

Observations contained in surface file (surface_9706.dat):

Number of single level fields (43) Length of each field (233) Time (Calendar day) Year Month Day Hour Minute Precipitation (mm/h) LH_(upward_W/m2) SH_(upward_W/m2) Area_mean_pressure (mb) Central facility pressure (mb) Ts Air (°C) 30/11/2011

Tg_Soil (°C) Surface air RH(%) Surface wind speed (m/s) u_wind (m/s) v_wind (m/s) Sfc_Net_Dn_Rad (W/m2) TOA_LW_Up (W/m2) TOA_SW_Down (W/m2) TOA_Ins (W/m2) GOES Lowcld (%) GOES_Midcld (%) GOES_HgHcld (%) GOES_Totcld (%) Cld_Thickness (Km) Cld_Topheight (Km) MWR_Cld_liquid (cm)

d(Column_H20)/dt (mm/hour) Column H2O advection (mm/hour) Srf_Evaporation (mm/hour) d(Column_Dry_Static_Energy)dt (W/m2)Column_Dry_Static_Energy_Advection _(W/m2) Column_Radiative_Heating_(W/m2) Column_Latent_heating_(W/m2) omega_surface_(mb/hr) qs_surface_(kg/kg) s_surface_(K) *MWR_precip_water_(cm)* Siros_Srf_LWUP_(W/m2) Siros_Srf_LWDN_(W/m2) Siros_Srf_SWUP_(W/m2) Siros_Srf_SWDN _(W/m2)

www.aemet.es

+

+ +

+ +

+ +

+ +

+ +

+ +

+ +

+ +

+ +

+ +

+ +

+

Execution of the model.

- * 79 levels, it's been also run for 65 levels.
- * Initial conditions (T, rt, u, v) have been interpolated to the 79 levels used in the model from the 35 levels of the observations.
- + + * Time steps of 60 seconds
- $^{+}$ $^{+}$ * And a ideal surface flux has been used.
- * Differenct configurations combining EDKF and EDMF mass flux schemes with DEEP convection schem activated or deactivated.

- -

4. DEEP CONVECTION CASE. Initial Conditions

MINISTERIO DE MEDIO AMBIENTE Y MEDIO RURAL Y MARINO AEMet Agencia Estatal de Meteorología

Humidity 11:30

4.2. Surface fluxes

GOBIERNO DE ESPAÑA MINISTERIO DE MEDIO AMBIENTE Y MEDIO RURAL Y MARINO

+ +

+ +

+ +

+ +

+ +

+ +

+ +

- * Idealized surface temperature and vapour mixing ratio fluxes have been used instead of those calculated from observations.
- * The fluxes have been collected from the webpage:
- <u>http://www.cnrm.meteo.fr/gcss/EUROCS/deepdiurnland/idea_index.</u> <u>html</u>
- * Surface schemes are defined in namelist:
- &NAM_PGD_SCHEMES CNATURE='FLUX' , CSEA='NONE' , CWATER='NONE'
 CTOWN='NONE' /
- * The surface fluxes are written in the routine:
 - mse/internals/init_ideal_flux.mnh
 30/11/2011
 www.aemet.es

4. DEEP CONVECTION CASE. init_ideal_flux.mnh

+

+

+

+

+ +

+ +

+

+

+

+

+

+

+

+

+

```
HOURLY surface theta flux (NFORC+1 values from OOUTC to 24UTC)
                1.
       IF(.NOT. ALLOCATED (XSFTH) )ALLOCATE(XSFTH(0:NFORC))
       !* unit: W/m2
       XSFTH(:) = 0.
       XSFTH(0) =
                     30.60
       XSFTH(1)=
                     18.59
       XSFTH(2) =
                      9.67
       XSFTH(46) =
                     56.39
       XSFTH(47) =
                     44.05
       XSFTH(48) = XSFTH(0)
       !* 2. HOURLY surface vapor mixing ratio flux (NFORC+1 values from 00UTC to 24UTC)
       IF(.NOT. ALLOCATED (XSFTQ) )ALLOCATE(XSFTQ(0:NFORC))
   —— !* unit: kg/m2/s
       XSFTQ(:) = 0.
       XSFTQ(0) =
                    156.55/XLVTT
       XSFTQ(1)=
                     98.57/XLVTT
                                                                                                                       19
        30/11/2011
                                                          www.aemet.es
+ +
```

+ 4. DEEP CONVECTION CASE. Surface fluxes fig.

+ + 4. DEEP CONVECTION CASE. Large scale forcing

4.3. Large Scale forcing

+ + Total temperature forcing = Horizontal_temp_Advec + Vertical_s_Advec
+ + Total moisture forcing = Horizontal_q_Advec + Vertical_q_Advec

* The large scale forcing must be included in the FA initial conditions file.
* The forcing in ascii format is written together with the namelist nam1D.
* The number of forcings used and the names are specified in namelist:

+ +

+ +

+ +

+ +

www.aemet.es

+

+ +

+ +

+ +

+ +

+ +

+ +

+ +

+ +

+ +

- +

+ +

+ +

+ +

+ +

+ + 4. DEEP CONVECTION CASE. Large scale forcing, fig.

+ + 4. DEEP CONVECTION CASE.

-

30/11/2011

Comparison of the precipitation for de EDKF configuration and no DEEP convection activated.

 $\square \text{ Red} \rightarrow \text{ LS forcing}$

 \square Blue \rightarrow no LS forcing.

Only when LS forcing is used, similar values of precipitation are obtained.

GOBIERNO DE ESPAÑA

DE MEDIO AMBIENTE Y MEDIO RURAL Y MARINO

+

+

+

4. DEEP CONVECTION CASE

- Comparison of precipitation with observations.
- EDKF configuration with DEEP convection activated.
- No big differences in DEEP convection precipitation whenever LSF is consedered or not. (Dependence mainly on the surface fluxes)
- Differences in time
- precipitation distribution and intensity 30/11/2011 www.aemet.es

GOBIERNO DE ESPAÑA

+

24

4. DEEP CONVECTION CASE. Problems

4.4. Problems

- Negative values of rt have been
 found when large scale forcing
 are used.
 - CPG
- $+ + CPG_GP$
- + + CPCTY_FORC (LSFORC,LSW_FRC)
 - MF_PHYS (LMPHYS)
 - CPG_DYN
- + + CP_FORCING (LSFORC)

EDKF and no DEEP Conv. Activated

Negative values of water mixing ratio

25

In routine CP_FORCING, LSF are interpolated to every timestep and added to the variables. Eventhough is³@h@hged to prevent from getting^{ww.aemet.es}

FART

+

+

- +

+ +

+ +

+ +

+ +

+ +

+ +

+ +

+ +

+ +

+

+

Conclusions

+ +

* MUSC35t2 succesfully installed.

- * * Model gives good result for the test case + +ARMCu L79.
- + + * Problems with humidity in high levels need to be solved.

<u>Future aims:</u>

 $^{+}$ $^{+}$ * Study of deep convection parametrization. + + * Application operationally at barajas airport (study of fog) + +

- - 26/01/2008

AEMET. Agencia Estatal de

MINISTERIO DE MEDIO AMBIENTE Y MEDIO RURAL Y MARINO

+

+

+ +

+ +

+ +

+ +

+ +

+ +

+ +

+ +

+ +

+ +

+ +

+ +

+ +

Thank you for your attention !

Questions ?

+ - 26/01/2008

+ -

+ +

+ +

+ +

+ +

+ +

+ +

+ +

+ +

+ +

+ +

+ +

+ +

+ +

+

AEMET. Agencia Estatal de

+ + + + + + +
