

Graphics tools for MUSC

Andres Luhamaa
University of Tartu

Motivation
● Output contains many ascii files
● Anyone can plot data from single ascii file, but handling many

files is not straightforward.
● Besides plotting, one may need to do post-processing

(statistics, comparison, etc)
● Would common approach to handling output data be useful?

● How to make such common approach that people would like to
learn it instead of just using directly the ascii files and writing own
scripts?

● What are the preferred graphics programs?

MUSC ascii output (some intial
findings)

● one output (provided by Laura) analysed
● 60 or 61 levels (full and half levels?)

● 60 level values are not the same, but very close, from file to file?

● file names can be used as variable names in scripts and data files

● timesteps in different files

● some files are empty

● some files are descriptions, not data

● many files

grads and matplotlib

● grads
● own file format

● easy handling of temporal
data (selecting timestep etc)

● one way of doing things

● limitid scripting capabilities

● interactive use possible

● not so easy to extend

● ...

● python-matplotlib
● any file format

● powerful programming language

● many ways of doing things
(organizing data, plotting)

● good scripting capabilities + scientific
computing libraries (scipy, numpy)

● interactive use with „ipython“

● extend anywhere, add anything

● some knowledge about python
required, but this is useful anyway.

● ...

convert_to_grads.py

● small script to convert available ascii files to grads data and
descriptor files

● with ipython, interactive use can be continued, all data is kept in
memory

● two sets of files are created, because grads can not handle two
versions of vertical coordinates in the same file?

● requires python and python-numpy, which are available on
almost any system

● usage: python convert_to_grads.py
● you must specify data directory inside script (could be modified

later)

workflow example

● grads
● open test60.ctl

● q file

● d <whatever>

● set t 3

● ...

●

● ipython -pylab
convert_to_grads.py

● jada60.keys() # will list
variables in array

● plot(jada60['<variable>']
[:,0],jada60['<variable>'][:,1])

For 61 level data, just replace 60 everywhere with 61. For
using python interactively, packages „ipython“ and
„python-matplotlib“ are required.

	Slaid 1
	Slaid 2
	Slaid 3
	Slaid 4
	Slaid 5
	Slaid 6

