

On influence of NWP driver and NWP-CTM interface on dispersion ensembles

M.Sofiev, P.Siljamo, M.Prank, J.Soares Contributors:

A.B.Hansen, M.Paales, L.Veriankaite, S.O.Jimenes, A.Svetlov, A.Gernega, E.Filatova, L.Grewling, E.Yakovleva, E.Khoreva

Content

- Introduction
- Ensemble AQ modelling: panacea or an expensive toy?
- Construction of an AQ ensemble
 - > Multi-model, single-model, poor-man's
 - Special type of an AQ ensemble: single-CTM-multi-NWP
- Examples of AQ ensembles
- Summary

Ensemble modelling: why?

- Atmospheric processes are stochastic
 - > The smaller scale and the shorter averaging the higher uncertainty
 - small-scale processes, as well as some chemical chains of reactions can be chaotic by nature
- Deterministic models work poor at small scales, with short averages and complicated chemical chains.
 - Reason is not (well, not only) model weaknesses but rather the stochastic nature of the atmosphere
- Right form of question: probability terms
- Ways to answer the probabilistic questions
 - make probabilistic models (what about physics?)
 - run ensembles of existing deterministic model(s)

Statistical plume model (F. Gifford, 1959) - 2

Results:

- Concentrations in the plume are stochastic variables;
- Frequency distribution of their logarithms is :

 $p(s) = A \frac{e^{m^2/\sigma^2}}{\pi \sigma^2} e^{-s^2/\sigma^2} I_0(\frac{m\sqrt{2s}}{2});$ where $s = -\ln(\alpha_1 C/M);$ $\alpha_1 = 2\pi U \overline{Y}^2;$ $m = \sqrt{\frac{y^2 + z^2}{y^2 + z^2}}$

C is the concentration; M is the emission rate; A – normalizing factor; I_0 modified Bessel function.

$$p(C/M) = A \frac{\alpha_1 e^{m^2/\sigma^2}}{\pi \sigma^2} (\alpha_1 C/M)^{0.5/\sigma^2 - 1} I_0(\frac{m}{\sigma^2} \sqrt{-2\ln(\alpha_1 C/M)})$$

Consequences for validation of dispersion models - 1

The "traditional" model validations starts with stratifying the measurements into groups (gradations) with "insignificant scatter" of governing parameters;

Indicators of performance (IP)

$$FBM = \frac{\langle M \rangle - \langle P \rangle}{\langle M \rangle + \langle P \rangle};$$

$$MFB = < \frac{M - P}{M + P} >;$$

FAa = Pr ob {
$$\frac{P}{a} < M < aP$$
 };

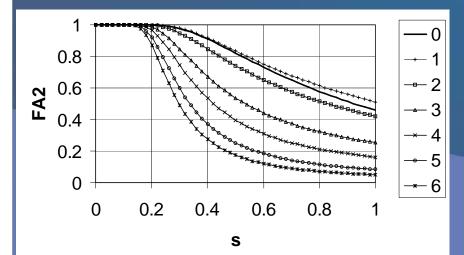
$$NMSE = \frac{\langle (M - P) \rangle}{\langle P \rangle \langle M \rangle};$$

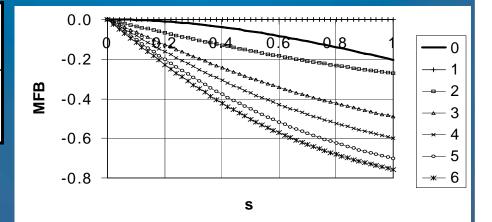
 $Corr = \frac{\langle (P - \langle P \rangle)(M - \langle M \rangle) \rangle}{\sqrt{\langle (P - \langle P \rangle)^{2} \rangle \cdot \langle (M - \langle M \rangle)^{2} \rangle}}$

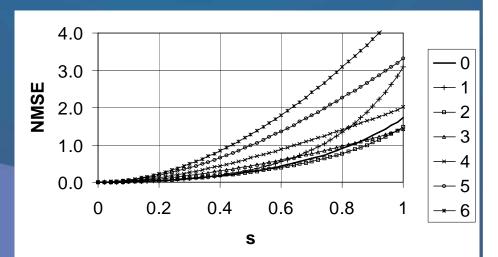
P is networks to reprint the image of t

Consequences for validation of dispersion models - 2

The best ("ideal") values of IP correspond to an "ideal model" that exactly predicts for each gradation the characteristics of interest (e.g., mean value or upper percentile);


 but only mean value can be reproduced exactly and only if the model is "perfectly" tuned to predict it.




Consequences for validation of dispersion models - 3

Ind	Me	50	75	90	95	98	99
	-an	%	%	%	%	%	%
No	0	1	2	3	4	5	6

PDF of Kincaid data correspond to s varying between 0.6 and 1.2

Constructing the ensemble. 1

- Single-model multi-setup ensemble
 - > One deterministic model
 - Input forcing, initial and/or boundary conditions are perturbed in a "reasonable" way or taken from several sources
 - > Each perturbed set of data is computed in a normal way
 - > Output datasets are considered as realizations of a stochastic process
 - Example: ECMWF ensemble weather forecast (operational !)
- Multi-model ensemble
 - > Several deterministic (and/or other) models are used
 - Each model uses own input datasets and/or common set(s)
 - > Output datasets are considered as realizations of a stochastic process
 - Example: EU FP5 ENSEMBLE project, NKS MetNet network, EMEP Pb-1996 model inter-comparison
- Poor-man's "ensemble of anything"
 - In absence of computational possibilities to construct a representative ensemble, a set of ad-hoc picked members is used with a hope to get some hints on the actual uncertainty of the cases
 - Skeptics: all currently active ensembles are of that type

Constructing the ensemble. 2

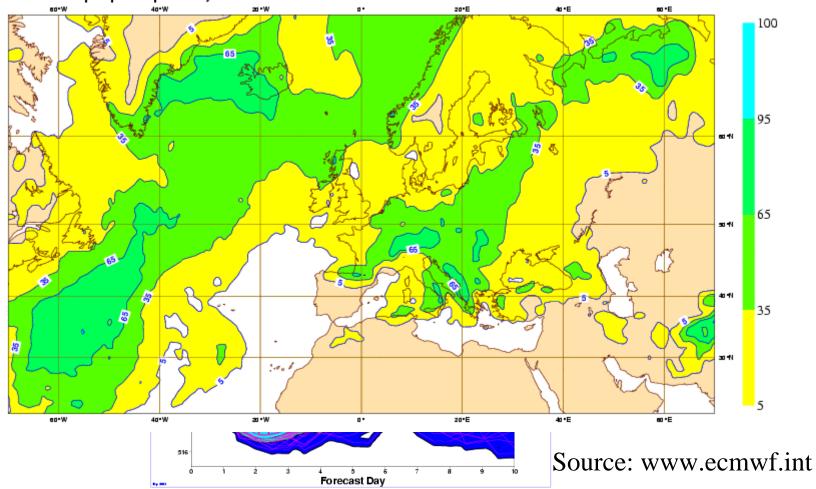
- Statistical part
 - several models
 - several parameterizations of the same model (including the initial/boundary conditions)
 - several sources of input data
 - > perturbations of the input data from a single source
- Deterministic part

. . .

- Remaining part of the setup
- The model(s) itself(themselves)
- Aggregating the ensemble: averaging, weight coefficients,

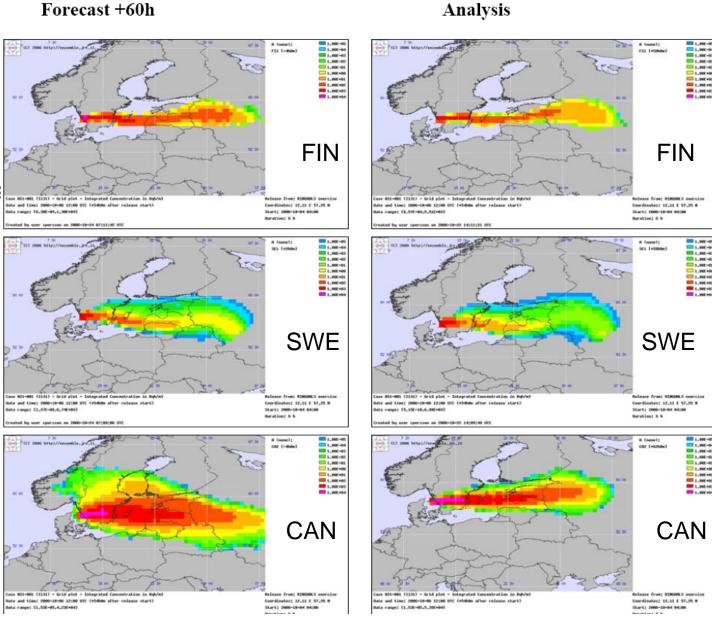
Problems of every ensemble

- The spread should be realistic: all probable situations should be reflected
- The probabilities for the specific perturbations should be estimated (or more members of the ensemble should be reflecting the more probable cases)
- Limited resources force selection of perturbations with max impact without any information about their probabilities
- A hope/belief is that the obtained set somehow represents the real uncertainties

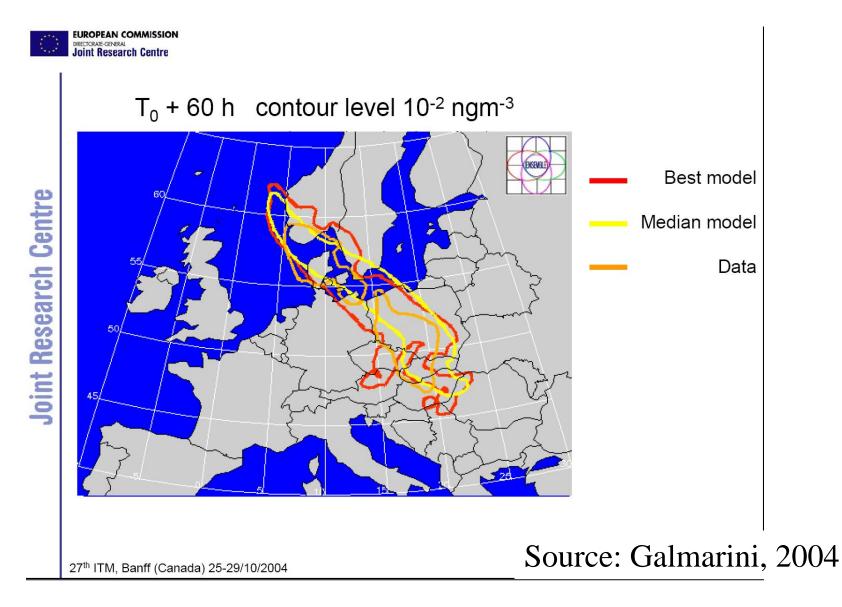

Single-model ensemble: ECMWF

Ensemble construction: singluarity analysis, members considered equally-probable

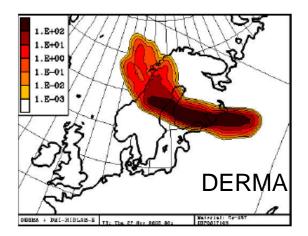
ECMWF ENSEMBLE FORECASTS FOR: DENMARK DATE: 20050406 KOBENHAVN LAT: 55.7 LONG: 12.6


Tuesday 5 April 2005 12 UTC © ECMWF Forecast probability t+000-240 VT: Tuesday 5 April 2005 00 UTC - Friday 15 April 2005 00 UTC Surface: Total precipitation probability > 0.003 mm

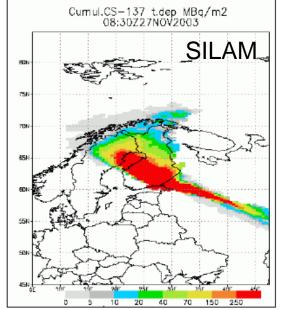
NWP forecast vs analysis (poor-man's ensemble)

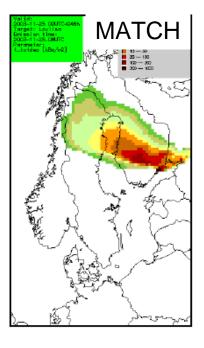

- NWP +60hrs forecast vs same-CTM hindcast using analysis
- different NWPs react differently even in a simple case

Source: report NKS-147, adapted from JRC-ENSEMBLE Web site



Multi-model ensemble: EU-ENSEMBLE project


Artificial source, real meteo with front passing

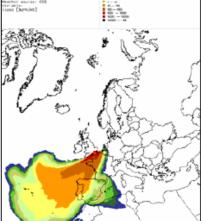


Total cumulative deposition shown, all model apart from HYSPLIT use versions of HIRLAM

Source: NKS report-147

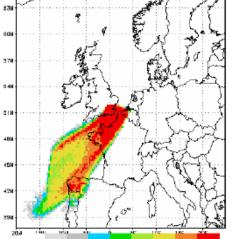
Real-life ensemble: Buncefield fire

• 11.12.2005, near London, major explosion at oil refinery, (entirely demolished), burning for 4 days



Source: http://www.buncefield-oil-fire-hemel-hempstead.wingedfeet.co.uk/

Buncefield fire: ensemble simulations



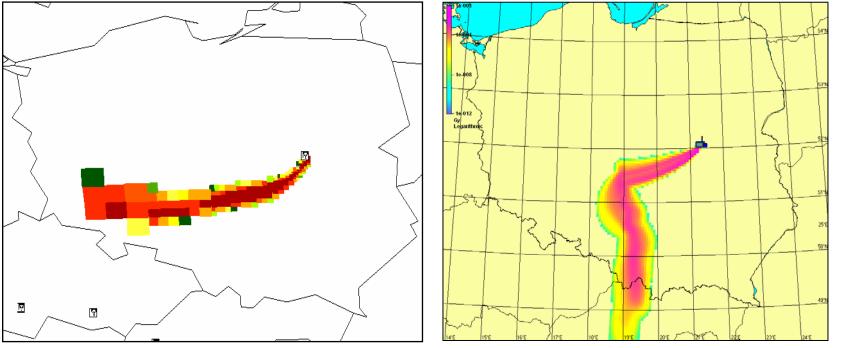
Buncefield

fuel depot

Central London

164 - 164 164 - 164 166 - 164

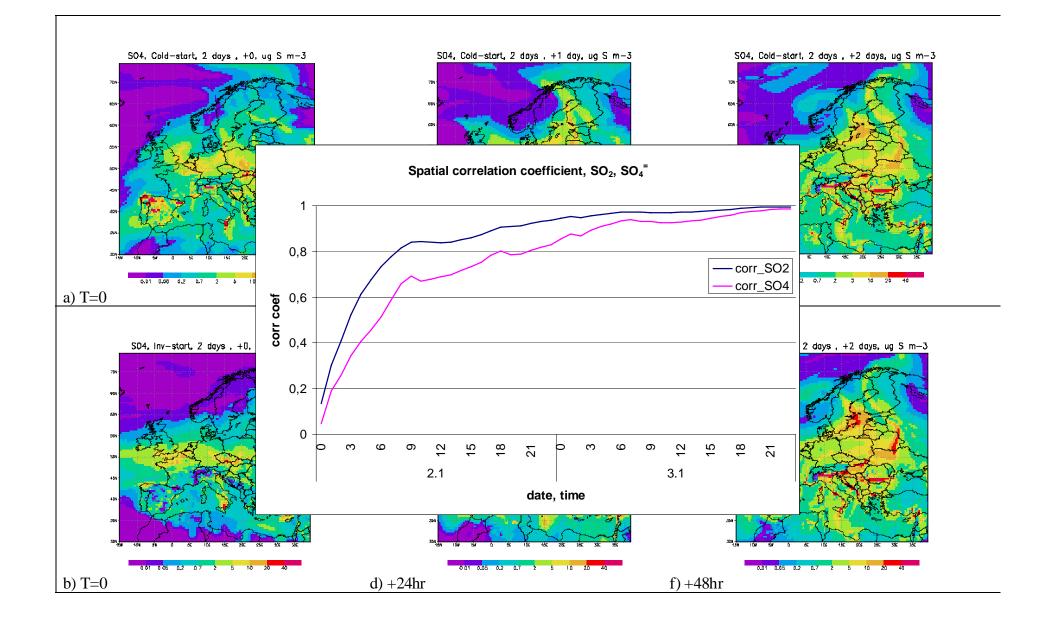
Multi-model ensemble: EMEP Pb model inter-comparison


	Observed	Mdl1	Mdl2	Mdl3	Mdl4	Mdl5	Mdl6	Mdl7	SAM
Pb concentrati	on in aero	sol, ng / m	3						
Mean	32.2	24.6	13.2	19.2	21.2	24.4	13.4	29.2	21.0
Correl		0.8	0.9	0.8	0.9	0.7	0.9	0.8	0.9
MLS slope		1.0	0.4	0.6	0.8	0.7	0.4	0.9	0.7
Pb concentration in precipitation, ug / I									
Mean	3.5	3.8	8.7	3.0	4.5	2.7	N/A	2.7	3.5
Correl		0.9	0.7	0.8	0.9	0.9	N/A	0.8	0.99
MLS slope		0.7	2.3	0.8	0.8	0.6	N/A	0.7	0.7
Pb wet deposi	tion, mg / i	n2 year							
Mean	2.7	2.5	2.3	2.5	2.8	2.1	N/A	2.0	2.3
Correl		0.7	0.6	0.6	0.8	0.7	N/A	0.7	0.7
MLS slope		0.7	0.7	1.0	0.8	0.7	N/A	0.7	0.7

Source: Sofiev et al., 1996

Multi-model debugging

- Source term are the same for both models
- Meteorological data are the same but:
 - Models used own meteo pre-processors

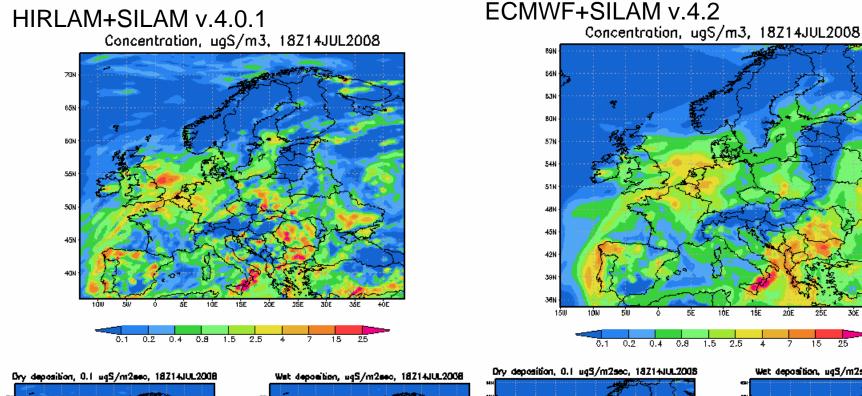


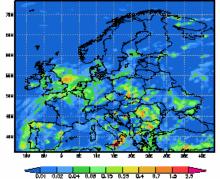
Source: Potempski, 2005

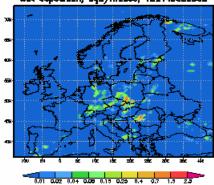
CTM specific: emission vs initial conditions.1

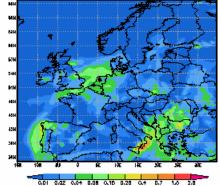
- For NWP: setting the starting state of the NWP model is sufficient to determine its following evolution
- For CTM: initial conditions and emission play both negligible and dominant roles depending on the time scale
 - close to start time initial conditions dominate
 - > the longer the time scale the stronger the emission impact
 - characteristic time scale varies for different species and cases
- Consequences
 - perturbation of a "wrong" parameter does not generate any response from the model
 - > same is true for data assimilation

CTM specific: emission vs initial conditions.2

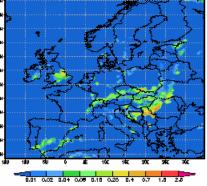

Example of a multi-NWP ensemble

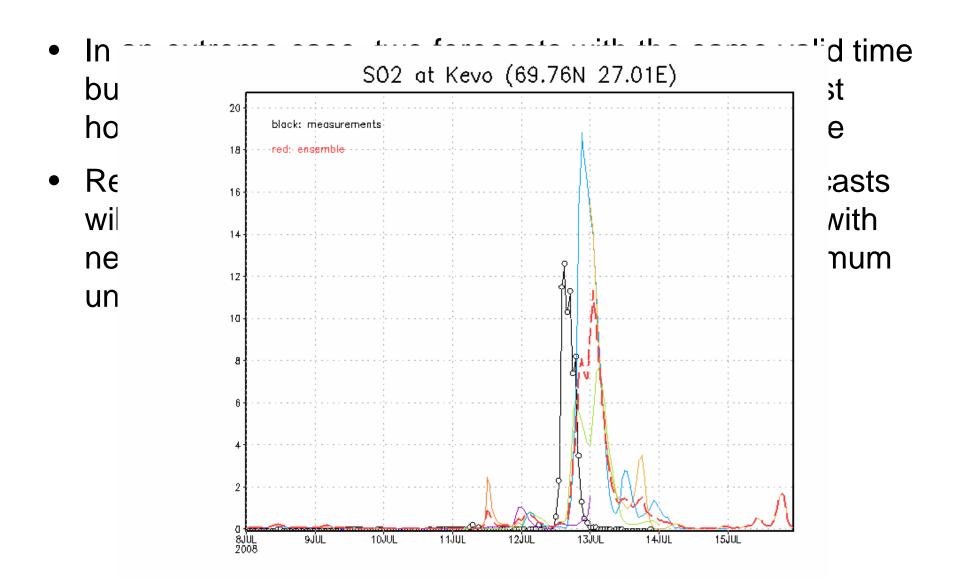

- FMI AQ forecasting is based on routinely available ECMWF and HIRLAM meteorological fields
- Same SILAM setups (well, almost) allow for a poor-man's ensemble considerations
 - > the most-evident places of potential bifurcations can be deducted
 - > no quantitative analysis is possible




HIRLAM- vs ECMWF- based AQ forecast

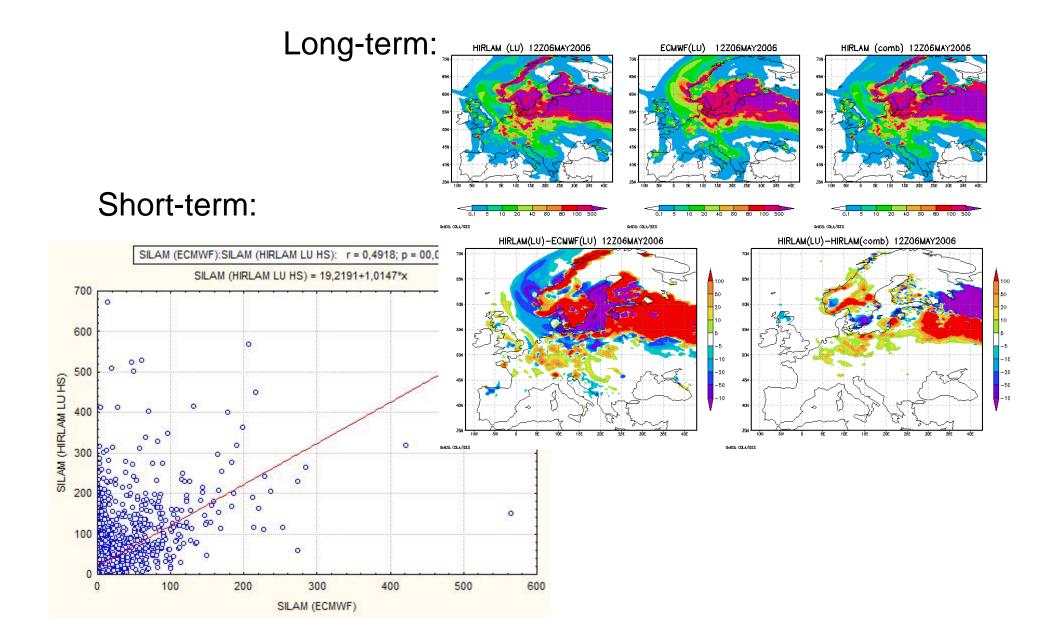
Forecast for SO2. Last analysis time: 20080714_00





Forecast for SO2, Last analysis time: 20080714 00

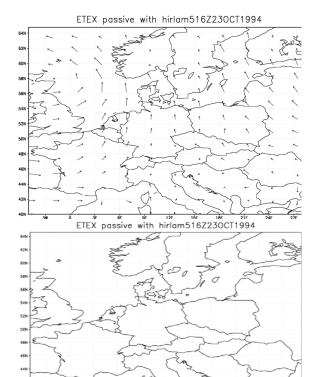
Example of single-NWP ensemble

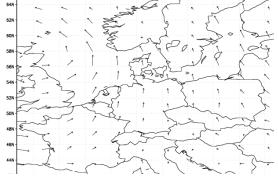


Quick lessons from the exercises: pollen .1

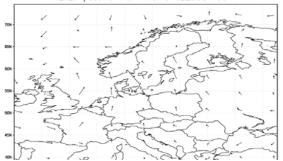
- Pollen exercise: single-model multi-NWP results can be drastically different
 - Half-a-degree bias (usually neglected in NWP model validation) for 2 months of integration means ~30 degree-days of accumulated heat sum, i.e. 25-50% of the flowering threshold
- Two scales of the problem: long- and short-term
 - Pollen season description is strongly dependent on regular bias in the input information, first of all, in temperature
 - Multi-NWP forecast helps revealing the potential problems before they turn into the incorrect season description
 - Short-term variability between the NWP drivers results in corresponding differences in the forecasts themselves
 - Treatment is similar to that of other AQ forecasts: hinting on possible bifurcations and other variability

Quick lessons from exercises: pollen. 2


Quick lessons from exercises: ETEX.1

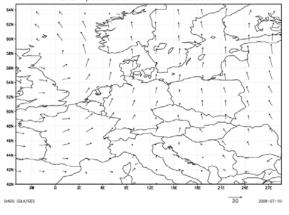

- Known features from ETEX ensembles have been confirmed
- Generally stable pattern evolution and final distribution
- High uncertainty of the initial 1.5 days of transport, with the first arch of 5 stations being most-vulnerable
- No unequivocal answer whether the plume has split (but probability was evaluated low)

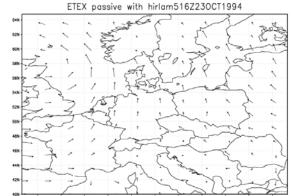
Quick lessons from exercises: ETEX. 2(1, 2, 3, 4, 5, 8, 9, 10, 11)



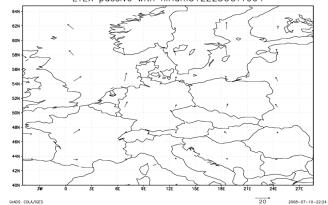
ETEX passive with hirlam516Z230CT1994

ETEX passive with hirlam516Z230CT1994


ETEX passive with hirlam516Z230CT1994



ETEX passive with hirlam516Z230CT1994



GADS: COLA/IGES

20

2008-07-10-

Ensemble: a necessity or computerism? Discussion

- Computerism: a decease when scientists believe that a problem, which they can neither solve nor even formulate, can easily be handled if a sufficiently expensive computer is acquired.
- Ensembles: a necessity or computerism?
- Existing models are deterministic while processes to be described are stochastic
 - An "easy" way to describe probability distribution function using deterministic tools is a Monte-Carlo search (random picking): expensive but theoretically converging to a full PDF
 - Existing ensembles are not (and never will be) sufficiently rich to approach a full-PDF description
- In principle, propagation of stochastic processes through deterministic systems can be described too
- Full-PDF solutions are not needed: practically valuable questions require only a small part of it
- Substantial changes in the existing systems, regulations and people thinking is needed to accommodate the unavoidable switch to probabilistic way of AQ descriptions