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Ensemble modelling: why?
• Atmospheric processes are stochastic

The smaller scale and the shorter averaging the higher uncertainty
small-scale processes, as well as some chemical chains of reactions can be chaotic 
by nature

• Deterministic models work poor at small scales, with short averages and 
complicated chemical chains. 

Reason is not  (well, not only) model weaknesses but rather the stochastic nature of 
the atmosphere

• Right form of question: probability terms
• Ways to answer the probabilistic questions

make probabilistic models (what about physics?)
run ensembles of existing deterministic model(s)



Statistical plume model 
(F. Gifford, 1959) - 2

Results: 
Concentrations in the 
plume are stochastic 
variables; 
Frequency distribution of 
their logarithms is : 2
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Consequences for validation of 
dispersion models - 1

The "traditional" 
model validations 
starts with 
stratifying the 
measurements into 
groups (gradations) 
with "insignificant 
scatter" of 
governing 
parameters; 
Indicators of 
performance of 
dispersion models

Indicators of performance (IP)
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P is "prediction" (deterministic); M is "measurement" (stochastic); < > - symbol of 
averaging.



Consequences for validation of 
dispersion models - 2

The best ("ideal") values of IP 
correspond to an "ideal model" that 
exactly predicts for each gradation the 
characteristics of interest (e.g., mean 
value or upper percentile); 

but only mean value can be reproduced 
exactly and only if the model is “perfectly” 
tuned to predict it.



Consequences for validation of 
dispersion models - 3
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Constructing the ensemble. 1
• Single-model multi-setup ensemble

One deterministic model
Input forcing, initial and/or boundary conditions are perturbed in a “reasonable” way 
or taken from several sources
Each perturbed set of data is computed in a normal way
Output datasets are considered as realizations of a stochastic process
Example: ECMWF ensemble weather forecast (operational !)

• Multi-model ensemble
Several deterministic (and/or other) models are used
Each model uses own input datasets and/or common set(s)
Output datasets are considered as realizations of a stochastic process
Example: EU FP5 ENSEMBLE project, NKS MetNet network, EMEP Pb-1996 
model inter-comparison

• Poor-man’s “ensemble of anything“
In absence of computational possibilities to construct a representative ensemble, a 
set of ad-hoc picked members is used with a hope to get some hints on the actual 
uncertainty of the cases

– Skeptics: all currently active ensembles are of that type



Constructing the ensemble. 2

• Statistical part
several models

several parameterizations of the same model (including the 
initial/boundary conditions)

several sources of input data

perturbations of the input data from a single source

• Deterministic part
Remaining part of the setup

The model(s) itself(themselves)

• Aggregating the ensemble: averaging, weight coefficients, 
…



Problems of every ensemble

• The spread should be realistic: all probable situations 
should be reflected 

• The probabilities for the specific perturbations should be 
estimated (or more members of the ensemble should be 
reflecting the more probable cases)

• Limited resources force selection of perturbations with 
max impact without any information about their 
probabilities

• A hope/belief is that the obtained set somehow represents 
the real uncertainties



Single-model ensemble: ECMWF

Source: www.ecmwf.int

Ensemble construction: singluarity analysis, members considered equally-probable



NWP forecast vs analysis (poor-man’s ensemble)

• NWP +60hrs 
forecast vs
same-CTM 
hindcast using 
analysis

• different NWPs
react 
differently 
even in a 
simple case

Source: report NKS-
147, adapted from 
JRC-ENSEMBLE 
Web site
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Multi-model ensemble: 
EU-ENSEMBLE project

Source: Galmarini, 2004



Artificial source, real meteo with front passing
Total cumulative 
deposition shown, all 
model apart from HYSPLIT
use versions of HIRLAM

Source: NKS report-147DERMA
HYSPLIT

SILAM SNAP
MATCH



Real-life ensemble: Buncefield fire

• 11.12.2005, near London, major explosion at oil refinery,  
(entirely demolished), burning for 4 days

Source: http://www.buncefield-oil-fire-hemel-hempstead.wingedfeet.co.uk/ 



Buncefield fire: ensemble simulations



Multi-model ensemble: EMEP Pb model 
inter-comparison

Observed Mdl1 Mdl2 Mdl3 Mdl4 Mdl5 Mdl6 Mdl7 SAM
Pb concentration in aerosol, ng / m3
Mean 32.2 24.6 13.2 19.2 21.2 24.4 13.4 29.2 21.0
Correl 0.8 0.9 0.8 0.9 0.7 0.9 0.8 0.9
MLS slope 1.0 0.4 0.6 0.8 0.7 0.4 0.9 0.7
Pb concentration in precipitation, ug / l
Mean 3.5 3.8 8.7 3.0 4.5 2.7 N/A 2.7 3.5
Correl 0.9 0.7 0.8 0.9 0.9 N/A 0.8 0.99
MLS slope 0.7 2.3 0.8 0.8 0.6 N/A 0.7 0.7
Pb wet deposition, mg / m2 year
Mean 2.7 2.5 2.3 2.5 2.8 2.1 N/A 2.0 2.3
Correl 0.7 0.6 0.6 0.8 0.7 N/A 0.7 0.7
MLS slope 0.7 0.7 1.0 0.8 0.7 N/A 0.7 0.7

Source: Sofiev et al., 1996



Multi-model debugging 
• Source term are the same for both models
• Meteorological data are the same but:

Models used own meteo pre-processors 

Source: Potempski, 2005



CTM specific: emission vs initial conditions.1

• For NWP: setting the starting state of the NWP model is 
sufficient to determine its following evolution

• For CTM: initial conditions and emission play both 
negligible and dominant roles depending on the time scale

close to start time initial conditions dominate

the longer the time scale the stronger the emission impact

characteristic time scale varies for different species and cases

• Consequences
perturbation of a “wrong” parameter does not generate any 
response from the model

same is true for data assimilation



CTM specific: emission vs initial conditions.2

a) T=0  c) +24hr  e) +48hr  

b) T=0  d) +24hr  f) +48hr  
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Example of a multi-NWP ensemble

• FMI AQ forecasting is based on routinely available 
ECMWF and HIRLAM meteorological fields

• Same SILAM setups (well, almost) allow for a poor-man’s 
ensemble considerations

the most-evident places of potential bifurcations can be deducted

no quantitative analysis is possible



HIRLAM- vs ECMWF- based AQ forecast

HIRLAM+SILAM v.4.0.1 ECMWF+SILAM v.4.2



Example of single-NWP ensemble

• In an extreme case, two forecasts with the same valid time 
but performed at different days (with different forecast 
horizons) can be considered as poor man’s ensemble

• Reasoning: the uncertain parts of the individual forecasts 
will have higher chances to change in case of rerun with 
new forecast horizon, thus hinting the points of maximum 
uncertainty



Quick lessons from the exercises: pollen .1

• Pollen exercise: single-model multi-NWP results can be 
drastically different

Half-a-degree bias (usually neglected in NWP model validation) for 
2 months of integration means ~30 degree-days of accumulated 
heat sum, i.e. 25-50% of the flowering threshold

• Two scales of the problem: long- and short-term
Pollen season description is strongly dependent on regular bias in 
the input information, first of all, in temperature

– Multi-NWP forecast helps revealing the potential problems before they 
turn into the incorrect season description

Short-term variability between the NWP drivers results in 
corresponding differences in the forecasts themselves

– Treatment is similar to that of other AQ forecasts: hinting on possible 
bifurcations and other variability



Quick lessons from exercises: pollen. 2

Long-term:

Short-term:



Quick lessons from exercises: ETEX. 1

• Known features from ETEX ensembles have been 
confirmed 

• Generally stable pattern evolution and final distribution

• High uncertainty of the initial 1.5 days of transport, with the 
first arch of 5 stations being most-vulnerable

• No unequivocal answer whether the plume has split (but 
probability was evaluated low)



Quick lessons from exercises: ETEX. 2(1, 2, 3, 4, 5, 8, 9, 10, 11)



Ensemble: a necessity or computerism?
Discussion
• Computerism: a decease when scientists believe that a problem, 

which they can neither solve nor even formulate, can easily be 
handled if a sufficiently expensive computer is acquired.

• Ensembles: a necessity or computerism?
• Existing models are deterministic while processes to be described are 

stochastic
An “easy” way to describe probability distribution function using 
deterministic tools is a Monte-Carlo search (random picking): expensive 
but theoretically converging to a full PDF
Existing ensembles are not (and never will be) sufficiently rich to approach 
a full-PDF description

• In principle, propagation of stochastic processes through deterministic 
systems can be described too

• Full-PDF solutions are not needed: practically valuable questions 
require only a small part of it

• Substantial changes in the existing systems, regulations and people 
thinking is needed to accommodate the unavoidable switch to 
probabilistic way of AQ descriptions


