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”Exact” departure cell (red rectangle) and backward trajectories (blue 
lines) for the analytical velocity field consisting of a translational, a 

divegent and a rotational part.

Analytic wind field:
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Graphical illustration of the departure areas for different DCISL 
schemes for the idealized test case for assessing the degree of local 

mass conservation. 
The read rectangle is the exact departure area.

RANCIC [1992] MACHENHAUER 
and OLK [1998]

NAIR et al. [2002] ZERROUKAT 
et al. [2002]
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Graphical illustration of the FFSL scheme (LINN and ROOD [1996]) for 
the idealized test case for assessing the degree of local mass 
conservation. The read rectangle is the exact departure area.

d) Shows the effective departure area: =100%                = 50%
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The monotonic filter of COLELLA, P., WOODWARD, P. R. 
(1984). Piecewise parabolic method for gas-dynamical 
simulations. J. Comp. Phys., 54, 174–201.

cell index: i i+1i−1

(a)
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COLELLA, P., WOODWARD, P. R. (1984). 
Piecewise parabolic method for gas-dynamical 

simulations. J. Comp. Phys., 54, 174–201.

cell index: i i+1i−1

(b)
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Tests and results
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The monotonic filter of COLELLA and WOODWARD (1984) A 

(SOLID BODY EXPREIMENTS) 

0ˆ =α

1l 2ll∞1l 2l

0.1860.086——0.0820.076—CCS-M

0.0770.0340.0330.0650.0410.0510.0420.0340.036CCS-P

0.0760.0390.0510.0650.0420.054———CCS-N

0.180.0890.0770.1090.0840.0840.1080.0910.094CISL-M

0.0760.0820.0430.0480.0450.0590.0310.0250.025CISL-P

0.0830.0510.0750.0480.0460.0630.0320.0350.052CISL-N

———0.0370.0400.0580.0170.0240.038SLICE-M

———0.0420.0490.0790.0220.0290.046SLICE-N

Schemes 

= π/3
2/ˆ πα =
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A situation in which the unmodified sub-grid-cell 
reconstruction exhibits strong Gibbs phenomen

Semi-monotonic filter of LIN and ROOD [1996].

cell index: i i+1i−1 10



The positive-definite filter of 
LIN and ROOD [1996];

0.1860.0860.0700.1290.0820.076———CCS-M

0.0770.0340.0330.0650.0410.0510.0420.0340.036CCS-P

0.0760.0390.0510.0650.0420.054———CCS-N

0.180.0890.0770.1090.0840.0840.1080.0910.094CISL-M

0.0760.0820.0430.0480.0450.0590.0310.0250.025CISL-P

0.0830.0510.0750.0480.0460.0630.0320.0350.052CISL-N

———0.0370.0400.0580.0170.0240.038SLICE-M

———0.0420.0490.0790.0220.0290.046SLICE-N

Schemes 

= π/3

11



KAAS, E. (2008). A simple and efficient locally mass conserving 
semi-Lagrangian transport scheme. Tellus A, In press.

12



d
dt
ψ ψ= − ∇⋅v

Continuity equation for passive tracer or for air, 
Lagrangian formulation

t
ψ ψ∂

= −∇⋅
∂

v

Continuity equation for passive tracer or for air (q=1), 
Eulerian formulation

(               density)ρψ q=

The Continuity Equation
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Traditional semi-Lagrangian (SL) scheme

+
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Traditional semi-Lagrangian (SL) scheme
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LMCSL
A new simple locally mass conserving semi-Lagrangian 

(LMCSL) transport scheme
“Based on cell-integrated semi-Lagrangian (CISL) thinking”

:

Ak is the volume represented by the kth Eulerian grid point.  

where  

Explicit forecast in grid point k:

)1(
1

, flowdivegentnonforw
K

k
lk −=∑

=

16



LCISL scheme:
Mass contributing grid points with 

bi-parabolic interpolation
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”Departure area” for one-dimensional LMCSL scheme 
based on parabolic interpolation. 

(Non-divergent case)
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”Departure area” for the LMCSL scheme based on bi-
parabolic interpolation

2×2 complementary grid cell domains 2×2 complementary grid cell domains 

19



Monotonic and positive-definite filter by KAAS (2008)

– a posteriori correction

Input to filter:

• A high order (bi-cubic interpolation) LMCSL unfiltered forecast ψ.

• A low order (bi-linear interpolation) LMCSL unfiltered forecast ψL

• A maximum (ψmax) and minimum (ψmin) value permitted in each
grid cell. This is defined from the maximum and minimum values
of the four upstream grid points surrounding the semi-Lagrangian
departure point, and modified by the effect of 
divergence/convergence. Divergence is taken into account using the 
traditional centered difference definition of divergence, implying
that the filter ensures conservation of a constant field in non-
divergent flows (assuming the centred difference way of defining
divergence). 20



Monotonic and positive definite filter (continued)

The filter:

The filter includes the following steps:

1. Set target values ψT equal to ψ.

2. Identify grid cells where ψT∉ [ψmin, ψmax] . In these and in the 
eight neighboring grid cells a mask is set.

3. In the masked cells (and only in these) a modified anti-diffused
target value is set: 

ψT = ψ + a (ψ- ψL) ; with a = min(0.7,1000.×((ψ − ψL)/r)2) and 

r = max(ψ) − min(ψ). The maximum and minimum values can
be over the entire domain or over a sub-domain. In the present 
application it is taken over a 9 by 9 grid point domain 
surrounding the actual cell. Such regional maximum and 
minimum values can be calculated efficiently.
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Monotonic and positive definite filter (continued)

The main motivation for the choice of target value is that the 
smallest scales should be antifiltered most strongly. Note that
((ψ − ψL)/r)2 is generally large for small scales and small for 
large scales. It can in fact be demonstrated that a non-linear
antidiffusion of the proposed type will improve also a classical
semi-Lagrangian forecast when applied in all grid points.

4. In the masked cells the target values, ψT, are reset to 
min(ψmax,max(ψmin,ψT)) to ensure shape conservation.

5. The ψ values in 2×2 complementary grid cell domains covering
the total integration domain are modified to ensure new ψ
values which are as close as possible to ψT under the strong
constraint of local conservation of total mass in the four grid
cells and the weak constraint of limitation to the individual grid
cell intervals [ψmin, ψmax]. Generally most 2×2 domains are
unchanged since ψT = ψ. 22



Monotonic and positive definite filter (continued)

6. The above step is repeated for the set of 2×2 complementary
grid cell domains that provide maximum spatial overlaps with
the domains in the previous step.

7. A final check and correction for violation of ψ∈ [ψmin, ψmax] is 
done on slightly larger grid cell domains (up to 13×13 grid
cells) surrounding the violating cell using the same procedure 
as above for the 2×2 domains. This step only becomes active
around very few – if any – violating cells. 

23



Tests and results
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Tests and results

,

ϕ
ϕs

u v

= gh,   h is depth of fluid
= ghs,  hs is height of topography
velocity components

Fφ Newtonian cooling (driving the model)
ψ density of passive tracer
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Application to the shallow water equations and the semi-implicit 
technique
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Tests and results

Passive tracer initial field

x (×103 km)
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Tests and results

SL

x (×103 km)
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Tests and results

x (×103 km)
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