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Mass Transport-not only Advection

The Continuity Equation:
Rate of change of mass density = mass advection
+ mass convergence = mass flux convergence
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Jockel et al. (2001): The mass-wind inconsistency can only be avoided in
on-line consistent models.

(Conservation of specific concentrations may be used as a consistency
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Finite Volume or Cell Integrated method

« The prognostic variable is a cell integrated mean
value:

o dxdyd
= [

where } = z—2z,

A cell integrated prognostic equation is obtained by
Integrating the Continuity Equation over an Eulerian grid cell



Traditional approach:

To estimate 3-D mass fluxes during a time interval A?
through all 6 faces of an Eulerian grid cell

4

A

Y4

_________________________

______________________________

g RN

L -

______________________

______________________

| x=— (" x at

»

»

~

X =

op -
—==VepJ.
Py PV3

Y j || x dxdyd:

AhAA

1 t+At

At ¥

h=z—-z

—” Inward mass fluxes through west, south and bottom faces
Outward mass fluxes through east, north and top faces

;+

5=

At
AhAA

§

2

i=1

|

< pV >eiidu

)




New approach:
Vertically discretized quasi-horizontal transport along
3-D trajectories or Lagrangian particle tracks

h

(The departure (;ell)/\N (The arrival cell)
2. We model this as Z :

a Lagrangian cell —] 3. The Lagrangian cell is
that is mowing with assumed initially to
the flow and is have vertical walls, which
ending up after a time remain vertical during
step inan Etlerian {0l _the whole time step.
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1. We realize, and will use in our modeling, that the air that is €nding up
iIn an Eulerian cell (the arrival cell) after a time step has been moving
with the flow along 3-D trajectories that originates in a so-called
deﬂparture cell, also called a Lagrangian cell.

Machenhauer and Olk (1998) 6



Transport along a "vertical Lagrangian coordinate” *
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The Flux Form of the continuity equation:
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« Starr (1945)
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The Flux Form is equivalent with a Lagrangian Form

of the Continuity Equation
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Direct derivation of the Lagrangian
Form of the Continuity Equation

The mass in a cell with the volume 6V :

Mg, = J‘H 0, dx dydz
This mass must be conserved. So

dM,
dt
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When integrated over At we get
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Two categories of Finite Volume
schemes

1.

Semi-Lagrangian schemes based on approximations of a direct
Integration over an up-stream departure area:

(o, )+ - AkliLAA Alél[iDl (0, O,h)dxdy :?]-V'g;}[ p, dx dy dz

So called DCISL schemes. Pioneering example: HIRLAM-DCISL

2. Flux Form schemes based on approximations of the fluxes
through the walls of an Eulerian arrival cell. Pioneering example:
the FFSL
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Traditional upstream DCISL scheme
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Change to HIRLAM vertical coordinate:
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- a new direct cell integrated semi-Lagrangian (DCISL) approach:

The HIRLAM-DCISL (Lauritzen et al., 2008)

based on quasi-horizontally backward and vertically forward
trajectories (Machenhauer and Olk, 1998)
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Consistent @ applied in the energy conversion
term in the thermodynamic equation
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Consistent mean pressure gradient
force along the trajectory
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Trajectory algorithm (1)

Hybrid trajectory scheme developed by
LAURITZEN et al. [2007]:
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Integration over departure area (ll)

a) RANCIC [1992]: Fully 2D inte-
‘fgration of piecewise bi-parabolic
~ 9 Sub-grid-scale representation.

| . | (250% overhead)

| \\4"b) MACHENHAUER AND OLK [1998]

7 Fully 2D integration of pseudo
®b) 7 bi-parabolic sub-grid-scale
% G Nl | representation. (10% overhead)
xE)  x(G)
Ek‘ - c) NAIR et al. [2002): Two one-
dimensional cascade integrations.

(more than twice as efficient as b))
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Plese-welse constant sub-grid representation
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Plece-wise linear representation
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Plece-wise parabolic representation
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t+ At

Piece-wise parabolic representation
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Application of the semi-implicit technique.

So, large time steps are possible.

In HIRLAM-DCISL (Lauritzen et al., 2008) the above

described transport scheme has been combined with
the semi-implicit time stepping technique resulting In
a dynamical model with a consistent on-line coupling
for passive tracers that is numerically absolute stable
for advection as well as gravity wave motion. Hence
large time steps is possible as in the traditional semi-
implicit semi-Lagrangian HIRLAM. This is the very
first finite volume model with semi-implicit time
stepping implemented.
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