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1. Discussion

Smolarkiewicz’s comment on my paper ( Bott 1989;
hereafter referred to as B89) contains several criticisms
with which I do not agree. Since his terminology par-
tially deviates from B89, some clarifications are first
necessary. The quantities Fi;,/; of the Comment which
Smolarkiewicz calls transport fluxes correspond to the
integrals I;%(cj+1,2) as defined in (7) and (8) of B89
(for brevity, hereafter referred to as B7 and B8). Note
that the physical dimension of the fluxes should be
[uy], where u is the transport velocity (for example,
given in m s™'). Hence, fluxes are obtained after mul-
tiplication of F and F by Ax/At as in (B4), (B9),
(B12) and (B13). Furthérmore, although Smolar-
kiewicz suggests that his equation (S2) corresponds to
the first step of my advection procedure as expressed
in (B12), this is not the case. Consider, for example,
the situation at the right boundary of a given y-distri-
bution with \!/,‘_1 > 1‘(/; > ¢’i+l > 0, \bk =0, Vik>i+1
and u > 0 everywhere. Fitting the Y-distribution in
grid box { with higher order polynomials (/ = 2) may
resultin Fj,y; <0and Fiyy)z | o=t > 0. Hence, in con-
trast to (B12), application of (82) now yields a non-
physical flux from box i + 1 to i, i.e., in the opposite
flow direction. Therefore, the use of the operators [ ]*
and [ ] throughout the Comment is misleading.

Smolarkiewicz correctly states that my advection
procedure proceeds in two steps. In the first step the
transport fluxes obtained by a given advection scheme
are multiplied by appropriate weighting factors (flux
weighting) before in the second step the modified fluxes
are nonlinearly limited by upper and lower values (flux
limitation ). He has not, however, correctly recognized
the importance and the role that each of these steps
plays in the advection procedure.

The main purpose of B89 is to obtain a given ad-
vection algorithm positive definite. In addition to the
positive definiteness it is also very important to reduce
phase and amplitude errors as much as possible.
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Therefore, in contrast to Smolarkiewicz’s assertion,
positive definiteness is achieved by carefully consid-
ering physical reasons and not by imposing arbitrary
limits on the advective fluxes. This is the reason why
the fluxes are weighted first before they are appropri-
ately bounded. In order to clarify in more detail the
role of the flux weighting, I will briefly repeat now the
logic of my derivation which has been distorted by
Smolarkiewicz.

In section 2 of B89, the special case with {¢jy1,21
= ] has only been considered as an example that clearly
demonstrates why and how flux weighting is per-
formed. The reason for introducing this procedure is
to obtain in a grid box a better description of the -
distribution than with the original fitting, i.e., the in-
tegrated flux form of Tremback et al. (1987). Note
that with this form the polynomials y;,(x’) are con-
structed from the requirement that at x;, X1, . . . the
values of ¥;,(x") agree with ¥;, Y., . . .. Due to this
requirement, however, the area covered by ¥;,(x’) is
in grid box j generally not given by y;Ax (for / = 2).
This means that the polynomial fitting is not area-pre-
serving. Since the polynomials are introduced to rep-
resent in a grid box the local distribution of the given
y-content, it is physically more meaningful to construct
the curves with the requirement of area preservation
instead of demanding agreement between ¥, ,(x") and
¥, Y15 ... at Xj, Xy, .... Performing the flux
weighting is equivalent to the parallel shift of ;,(x’)
in such a way that area preservation is achieved. Hence,
in each grid box the polynomials are constructed by
means of two physical properties of the y-field, i.e., the
trend of the curve and the total y-content of the box.

Smolarkiewicz does not recognize that flux-weight-
ing is indeed related to the positive definiteness of the
algorithm even though it does not make the scheme
positive definite. (The latter has never been claimed
in B89.) From (B12) it is clear that the advective fluxes
are linear functions of the weighting factors. The effect
of the linear weighting process on positive definiteness
of the algorithm is to weaken the importance of the
following nonlinear flux limitation. This is illustrated
in the example with large Courant numbers cj,2
~ land I;; > ¢;in (B11). Without flux-weighting the
scheme may become only positive definite when flux
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limitation is carried out, but performing the weighting
procedure already maintains positive definiteness so
that the fluxes are unaffected by the following flux lim-
itation. Hence, due to the careful design of the poly-
nomials by means of physical arguments, the nonlinear
flux limitation may be reduced or become unnecessary.

This is why flux weighting yields a distinct improve-
ment of the results by reducing phase speed errors.
Comparing Figs. 1 and 2 of the Comment, one can see
that in contrast to Smolarkiewicz’s opinion, the im-
provements are quite apparent, particularly since these
are achieved in a very simple and numerically efficient
manner. In order to elucidate more clearly the effect
of flux ‘weighting, I repeated thé one-dimensional ad-
vection experiments with a single Fourier mode of
wavelength 4Ax for model version / = 4 but without
performing flux weighting. Results are depicted in Fig.
1. For comparison the results obtained with the original
scheme, i.e., with inclusion of flux weighting, are shown
in Fig. 2. As can be clearly seen from these figures,
phase speed errors decrease distinctly when flux
weighting is carried out. Furthermore, omitting this
procedure yields an increase of amplitude errors which
becomes very pronounced for large Courant numbers.
Comparing Fig. 1 with the corresponding results of the
advection scheme of Smolarkiewicz (1983) (see Fig.
3), however, clarifies that in the proposed method the

most important improvement is due to the fitting of -

the Y-distribution with higher order polynomials. This
holds particularly for small Courant numbers ¢ = 0.25
where the scheme of Smolarkiewicz, contrary to his
opinion, produces comparatively large phase and am-
plitude errors. Similar considerations also hold for the
Leapfrog algorithm. (Compare Figs. 5 and 6 of the
comment with Figs. 3d-f of B89.)

Although the logic of Smolarkiewicz’s derivation dif-
fers from mine, he arrives at a similar result (his “up-
stream renormalization”). In his approach, however,
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- FG. 1. Results from the one-dimensional stability test with a single
Fourier mode of wavelength 4Ax for model version / = 4 without
flux weighting. Solid (dashed) lines represent the analytical solution
(numerical solution for various Courant numbers c).
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FI1G. 2. As in Fig. 1, but including flux weighting.

the question of how the term v;.1,, may be appropri-
ately chosen remains unanswered. A simple method
to overcome this problem is to draw from (B12)
Virtj2 = Fir1y2la=1 (using the nomenclature of the
comment). The results obtained with (0.88)~!
X Fir172 | a=0.88 (Fig. 4 of the comment) are seemingly
good. Like the introduction of the “correction coeffi-
cient” Sc # 1 in Smolarkiewicz (1983), however, this
formula is derived without any mathematical or phys-
ical arguments. Thus, the encouraging result obtained
in a particular situation does not imply that the same
quality of the results will be obtainéd in the general
case.

The formalism for sign preservation as presented in
section 3 of the Comment repeats my own algorithm
except that the importance of the flux weighting pro-
cedure has not been recognized. Of course, extending
the proposed method to the multidimensional case is
possible in principle. [ Note that Eq. (S10) may only
be used after carefully redefining the operators [ ]*.]
As pointed out in B89 and in Tremback et al. (1987),
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FIG. 3. As in Fig. 1, but obtained with the Smolarkiewicz’s
1983 advection scheme.
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TABLE 1. Coefficients a;; for the / = 2 and / = 4 versions of the area-preserving flux form.

[=2 1=4
o — 5 W = 2695 + Y1) o5 Oz = 1160500 + 2134y, — 116U, + M)
@, R 25 (C5Wiea + 345 — 340 + SU5)
a2 %(‘Pjﬂ = 2¢; + ) é(“3\//j+2 + 36y — 66y; + 36,1 — 3¢50)
a3 — = Wi = 2 + 21 — 5o2)
a4 — 5 Wisz = At + 645 — 4t + ¥500)

though, the resulting code would become numerically
expensive. In particular, this holds for the model ver-
sions / = 2, 4 which B89 recommends due to their
small phase and amplitude errors. Hence, I intention-
ally omitted the derivation of the corresponding for-
mulas.

As mentioned above, performing the flux weighting
is equivalent to making the given polynomials area-
preserving. The resulting improvements suggest that it
may be physically reasonable to construct directly the
polynomials with the requirement of area preservation.
This is easily done by solving at grid point j the linear
system of / + 1| equations

Xiv1j2 !
Vil x; =f Zoapxtax,i=j,jx1, ..

Xi~1/2 k=0

Here the term AX; = X412 — Xi—1/2 represents the more
general case with variable grid spacing. Nevertheless,
for the sake of simplicity, Table 1 only depicts the coef-
ficients a;; which are obtained for polynomials of order
[ = 2 and I = 4 in the special situation with constant
Ax. Substitution of these coefficients into (B7)-(B11)
yields together with (B12)-(B14) the area-preserving
flux form. Comparing this form with the constant grid
flux form of Tremback et al. (1987) reveals that in the
special case with constant grid meshes both model ver-
sions are identical (when flux limitation is omitted).
Due to the fact that the area-preserving flux form is
extenable to variable grid spacings, however, the name
“constant grid flux form™ is somewhat misleading and
has been replaced.

Figure 4 depicts the results of the one-dimensional
Fourier tests for the / = 4 version of the area-preserving
flux form, elucidating that the new algorithm yields a
further strong reduction of phase and amplitude errors.
This holds particularly for the lower Courant numbers
¢ < 0.5 where the other presented methods are less
satisfactory (see Figs. 2 and 3). These encouraging re-
sults suggest that in the multidimensional case (i.e.,
when time splitting is applied ) the area-preserving flux
form may also be superior to other known algorithms.

This is demonstrated in Fig. 5 depicting the results of
the rotational flow field test. After six revolutions the
maximum of the y-distribution has only decreased to
89% of its initial value in comparison to 86% for the
original / = 4 version (see Table 2 of B89 ). Both model
versions need similar computational effort which is less
than the fourfold time as required by the upstream
method. This elucidates that, in contrast to the sug-
gestions of Smolarkiewicz, the flux weighting procedure
is only of minor importance for the computational ef-
ficiency of the scheme. Comparison of Fig. 5 of this
reply and Figs. 3d-f of B89 with the corresponding
Figs. 2-15 of Smolarkiewicz (1983) clearly demon-
strates the distinct superiority of my scheme over the
hybrid schemes (Clark-Hall, SAHS, FCT) and over
all versions of the Smolarkiewicz algorithm. This holds
for the numerical accuracy (phase and amplitude er-
rors) as well as for the computational efficiency [ com-
pare Table ! of Smolarkiewicz (1983) with Table 2
of B89].

2. Conclusion

The main purpose of my advection scheme is to be
positive definite and computationally very efficient. At
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' FIG. 4. As in Fig. 1, but with model version [ = 4
of the area-preserving flux form.
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FIG. 5. Results from the rotational flow field experiment after six
full rotations for the / = 4 version of the area-preserving flux form.

the same time the model should produce only small
phase and amplitude errors. The resulting algorithm
satisfies all these conditions, and furthermore has the
advantage to be extendable to other known advection
schemes. \

In several points I disagree with Smolarkiewicz’s in-
terpretation of my method. Particularly, he underes-
timates the importance of the flux weighting process.
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In contrast to his assertion, I clearly point out in B89
the different roles which each of the two steps play in
the procedure, i.e., the reduction of phase speed errors
in the first step and the positive definiteness of the
scheme obtained in the second step. The formalism
presented in section 3 of Smolarkiewicz to obtain sign
preservation is exactly the same as my procedure and,
therefore, its presentation in the comment is redun-
dant. The necessity of extending the algorithm to mul-
tidimensions seems rather questionable with respect to
the required computational efficiency.

The proposed advection scheme provides a very
simple and numerically efficient method to strongly
reduce phase and amplitude errors. This has been
demonstrated by the area-preserving flux form in B89
and in this Reply. This form is applicable to variable
grid spacings and reduces for constant Ax to the con-
stant grid flux form of Tremback et al. (1987).
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