Ensemble radar precipitation estimation in a mountainous region

Urs Germann MeteoSwiss, Locarno-Monti

G Galli, K Friedrich, M Boscacci MeteoSwiss, Locarno-Monti

D Sempere-Torres, M Berenguer GRAHI, Barcelona

I Zawadzki, G Lee McGill, Montreal

MeteoSwiss

Uncertainty in radar precipitation estimates

Sources of uncertainty in radar estimates

- Hardware failure and instability, for example:
- power failure
- aging TR-cell
- antenna pointing error
- miscalibration

Limitations of observing technique, for example:

- undersampling (space+time)
- limited visibility
- non-weather echoes
- reflectivity-to-rain conversion

40 years of experience

2 How do we use uncertainty information

Step 1: to reduce uncertainty

- Hardware calibration
- ground echo elimination
- correction of beam shielding
- etc

10 years of progress

Step 2: to live with residual uncertainty

- ensemble radar precipitation estimation

first attempts

Monte Lema radar, near Lugano

Challenge of using radar in mountains

many elevations in short time needed

strong returns from mountains (clutter)

shielding of radar beam by mountains

Germann and Joss, 2004 Ed P Meischner, Springer

10 years of progress: radar-gauge verification

Quality descriptors

Bias: radar/gauge (accumulation over whole season)

Scatter: variation of daily radar/gauge ratio

10 years of progress: radar-gauge verification

Ensemble radar precipitation estimation

Idea Generate set of perturbation fields and add perturbation to original radar rainfall field.

use ensemble in hydrological (!) and meteorological (?) models

La Dole radar, near Geneva

Uncertainty geography

Germann et al., 2006, Q JRMS

Uncertainty auto-covariance depends on location

Uncertainty auto-covariance depends on location

Perturbation field must have correct variance and auto-covariance in space

Generation of perturbation field

Estimate variancecovariance matrix

Two approaches:

- use **radar-gauge** agreement as estimate of total radar uncertainty

 examine all sources of error separately and compute sum of errors

(e.g. uncertainty in reflectivity-torainrate conversion, uncertainty in vertical reflectivity profile, attenuation, etc) 2 Generate multi-Gaussian perturbation by Cholesky decomp.

δ = Lε, where δ is desired perturbation

δ is desired perturbation vector (correlated multi-Gaussian),
ε is Gaussian white noise vector,

L is lower-triangular matrix of C $LL^T = C$, where C is variance-covariance matrix.

full flexibility for C (as opposed to spectral approach)

Does it reproduce the variance-covariance matrix?

Experiment set-up

3 rivers Maggia-Verzasca-Ticino: 2800km²-catchment southern Alps, 1 radar, 18 (27) gauges, 6 months of data Lake 200m; mountain peaks >3000m

Goal: generate ensemble of hourly radar precipitation fields

Assumption: uncertainty defined as log(radar/gauge) is correlated random

C is obtained from radar-gauge. L from Cholesky decomp. of C. Use *modified* Cholesky algorithm to avoid numerical instability.

Thus: we simulate perturbation δ_i using $\delta = L\epsilon$ and obtain ensemble member R'_i by adding $-\delta_i$ to logarithm of original radar field R_0 $log(R'_i) = log(R_0) - \delta_i$

Example of auto-correlation for given location

Example of perturbation field

Three realisations of perturbation field

We have a flexible ensemble generator ...

What next?

Add time using auto-regressive model.

Add physics to estimate variance-covariance matrix.

Conditioning of stochastic simulation with any type of knowledge (e.g. uncertainty at given point).

Select relevant members depending on sensitivity of given application.

Test during MAP D-PHASE meteo-hydrological forecast demonstration project in fall 2007.

Discuss within COST-731.

Summary

Thank you!

Collaboration: MeteoSwiss, GRAHI UPC Barcelona, McGill Montreal

Local bias

Example of auto-correlation for given point

Example of perturbation field

From reflectivity to precipitation (Z-R)

Courtesy: Lee+Zawadzki, J Appl Meteorol, 2005

Attenuation by water on radome

Germann, Meteorol Z, 1999

1999 versus 2004 (whole Switzerland)

Germann et al, 2004

Extrapolation from aloft

Bellon et al., 2005; Germann and Joss, 2002, J Appl Meteorol

OPERA WP1.2E

