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2Uncertainty in radar precipitation estimates

How do we use 
uncertainty information2Sources of uncertainty

in radar estimates1
Hardware failure and 
instability, for example: 
- power failure
- aging TR-cell
- antenna pointing error
- miscalibration

Limitations of observing 
technique, for example: 
- undersampling (space+time)
- limited visibility
- non-weather echoes
- reflectivity-to-rain conversion

Step 1: to reduce uncertainty 
- Hardware calibration
- ground echo elimination
- correction of beam shielding
- etc

40 years of experience

10 years of progress

Monte Lema radar, near Lugano

1

Step 2: to live with residual 
uncertainty
- ensemble radar precipitation
estimation

first attempts 12

2



3Challenge of using radar in mountains

many elevations
in short time 
needed

strong returns
from mountains
(clutter)

shielding of
radar beam
by mountains

accumulated precipitation

mountain returns clear sky

scan strategy 20 sweeps in 5min

Germann and Joss, 2004
Ed P Meischner, Springer
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410 years of progress: radar-gauge verification

Summer 1999 0.34 3.6 73 8 53
improve ground echo elimination

Summer 2001 0.36 2.1 75 8 57
introduce correction for vertical reflectivity profile

Summer 2004 0.87 2.0 89 14 62
introduce global bias correction

Summer 1998 0.63 2.7 87 30 39
introduce visibility map correction

introduce local bias correction (training with 2003 data)

Summer 2004 1.003 1.7 90 15 63

% % %

Summer 1997 0.50 2.7 84 34 40
hardware calibration + monitoring since 1993

3 Swiss radars, 58 gauges, 
all (!!) days of May-October

Germann et al., 2006, QJRMS 

POD FAR ETS
for 0.3mm daily rainfall

% % %

Bias Scatter

Factor Factor

in terms of water amounts

missed 
water=2%

false 
water=1‰

subjective
data set 1.4



5Quality descriptors

Bias: radar/gauge 
(accumulation over whole season)

Scatter: variation of daily 
radar/gauge ratio
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By the way: at this scale 
(6 months x 58 gauges) 
radar errors are approx

Gaussian, see plot above.



610 years of progress: radar-gauge verification

Summer 1999 0.34 3.6 73 8 53
improve ground echo elimination

Summer 2001 0.36 2.1 75 8 57
introduce correction for vertical reflectivity profile

Summer 2004 0.87 2.0 89 14 62
introduce global bias correction

Summer 1998 0.63 2.7 87 30 39
introduce visibility map correction

introduce local bias correction (training with 2003 data)

Summer 2004 1.003 1.7 90 15 63

% % %

Summer 1997 0.50 2.7 84 34 40
hardware calibration + monitoring since 1993

3 Swiss radars, 58 gauges, 
all (!!) days of May-October

Germann et al., 2006, QJRMS 

POD FAR ETS
for 0.3mm daily rainfall

% % %

Bias Scatter

Factor Factor

in terms of water amounts

missed 
water=2%

false 
water=1‰

subjective
data set 1.4



7Ensemble radar precipitation estimation

La Dole radar, near Geneva

►use ensemble in hydrological (!) and meteorological (?) models

best estimate ensemble

Generate set of perturbation fields and 
add perturbation to original radar rainfall field.Idea

Ensemble represents uncertainty 
in radar estimates



8Uncertainty geography

►Uncertainty 
depends on location

Germann et al., 2006, Q JRMS 



9Uncertainty auto-covariance depends on location

►High spatial 
autocorrelation
e.g. within the Alps



10Uncertainty auto-covariance depends on location

►Low spatial 
autocorrelation
e.g. around Zurich
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Albis radar, near Zurich

► Perturbation field must have correct 
variance and auto-covariance

in space 



12Generation of perturbation field
Estimate variance-
covariance matrix1

δ = Lε, where
δ is desired perturbation vector
(correlated multi-Gaussian),
ε is Gaussian white noise vector,

L is lower-triangular matrix of C
LLT = C, where
C is variance-covariance matrix.

full flexibility for C
(as opposed to spectral approach) 

Generate 
multi-Gaussian 
perturbation by 
Cholesky decomp.              

2

Two approaches: 

- use radar-gauge agreement as 
estimate of total radar uncertainty

- examine all sources of error 
separately and compute sum
of errors
(e.g. uncertainty in reflectivity-to-
rainrate conversion, uncertainty in 
vertical reflectivity profile, 
attenuation, etc)



13Does it reproduce the variance-covariance matrix?

Variance-covariance matrix
as input to stochastic simulation

high variancelow variance

900 radar image pixels 
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Variance-covariance matrix
from 1000 simulated realisations

900 radar image pixels 
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variances on the diagonal

auto-covariances

off-diagonal



14Experiment set-up

Goal: generate ensemble of 
hourly radar precipitation fields

Assumption: uncertainty 
defined as log(radar/gauge) is
correlated random

C is obtained from radar-gauge.
L from Cholesky decomp. of C.
Use modified Cholesky algorithm
to avoid numerical instability.

Thus: we simulate 
perturbation δi using δ = Lε
and obtain ensemble member 
R'i by adding -δi to logarithm 
of original radar field R0
log(R'i) = log(R0) - δi

La
go

M
ag

gi
or

e

Lugano

Maggia
Verzasca

Ticino

3 rivers Maggia-Verzasca-Ticino:
2800km2-catchment southern Alps, 
1 radar, 18 (27) gauges, 6 months of data
Lake 200m; mountain peaks >3000m



15Example of auto-correlation for given location

Colour shows 
correlation of 
radar uncertainty
with respect to 
this point 

high correlationlow correlation

Monte Lema
radar (1625m) 

gauges to calculate
auto-covariance 



16Example of perturbation field

decrease rain rateincrease rain rate

700 catchment pixels, 
each 2km x 2km
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decrease
rain rate

increase
rain rate

Three realisations of perturbation field



18We have a flexible ensemble generator ...

Add time using auto-regressive model. 

Add physics to estimate variance-covariance matrix. 

Conditioning of stochastic simulation with any type of knowledge 
(e.g. uncertainty at given point).

Select relevant members depending on sensitivity of given application. 

Test during MAP D-PHASE meteo-hydrological forecast demonstration 
project in fall 2007.

Discuss within COST-731.

What next?
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Challenge of radar in the Alps Auto-correlation of radar uncertainty Simulated perturbation field

Thank you!

Collaboration: MeteoSwiss, GRAHI UPC Barcelona, McGill Montreal

Summary



20Local bias

Monte Lema
radar (1625m) 

gauges to calculate
local bias 

radar too wetradar too dry



21Example of auto-correlation for given point

Correlation of 
radar uncertainty
with respect to 
this point 

high correlationlow correlation

Monte Lema
radar (1625m) 

gauges to calculate
auto-covariance 



22Example of perturbation field

decrease rain rateincrease rain rate

700 catchment pixels, 
each 2km x 2km

Major assumptions:
- radar-gauge ratio is good 
estimate of overall radar 
uncertainty

- uncertainty defined as
log(radar/gauge) is  
correlated random

- uncertainty in summer 
2005 is representative
for particular event
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-6 °C

From reflectivity to precipitation (Z-R)
Reflectivity from UHF profile

Courtesy: Lee+Zawadzki, J Appl Meteorol, 2005 

Collocated
disdrometer



24Attenuation by water on radome

rain at radar site

radome

Germann, Meteorol Z, 1999



251999 versus 2004 (whole Switzerland)

Summer 1999

Bias: 0.34 (-66%)
Scatter: 68% of rainfall within factor of 3.6

Summer 2004
(after correction of local bias as observed in 2003)

Bias: 1.003 (0%)
Scatter: 68% of rainfall within factor of 1.7
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26Extrapolation from aloft

growth in ice phase

zero-degree isotherm

falling rain 

nose = 
bright-band

Bellon et al., 2005; Germann and Joss, 2002, J Appl Meteorol



27OPERA WP1.2E
Radar scientist

instrument, algorithms User
sensitivity

set of 
physically

meaningful
measures

of the
uncertainty

wavelength,
scan strategy,

radarsite,
receiver,  

landscape,
climate, 

(...)
bias, 

scatter, 
POD, 

residual clutter 
statistics, 

(...)

black list, 
weighting map, 

choice of 
algorithm, 

(...)

WP1.2: KNMI, FMI, SMHI, MeteoSwiss
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