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The ultimate problem in meteorology

Initial value problem

Deterministic (?)

Observations -> analysis -> forecast

Now accept that we need to allow for uncertainty and 
can gain information

ensembles, probability, distributions

Allow for error in observations
error in forecast model
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Sources of information

Observations – direct and indirect
eg screen temperature, mast wind, aircraft temperature
v  satellite radiance, radar doppler radial wind, reflectivity

No uniform network, incomplete information

However information is advected and evolves nonlinearly

Previous forecast contains information from previous observations

Therefore combine latest forecast with latest observations
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Sources of information
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Radar Network 
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Four-dimensional variational assimilation
(4D-Var)

Observation
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Key Ideas from Gauss:

Gauss, 1809:  Theoria Motus Corporum Coelestium
-1823: Theoria combinationis observationum erroribus minimis obnoxiae

all models and observations are approximate
the resulting analysis will also be approximate
the observations must be combined in some optimal fashion
it is better to have enough observations to over-determine the 
problem
the model is used to provide a preliminary estimate
the final estimate should fit the observations within their 
(presumed) observational error

Note: O(106) obs

O(107) model variables * grid-points
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The background has information…
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What is data assimilation? 

The best and most powerful analysis systems are obtained by 
incorporating numerical models into analysis algorithms.
The model encapsulates our understanding of the physical laws, and can 
be used to propagate observational information forwards in time.
Data assimilation: the production of regular analyses for, and in 
conjunction with, a forecast model.
Typically, an intermittent data assimilation cycle is used:
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Intermittent Data Assimilation

forecast model (time)

obs

analysis
T-3 T+0 T+3
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Data Assimilation

model background

observations

data

assimilation

increments

add back into model model background
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The Analysis Problem

Assumptions: Gaussian errors, no bias, no correlations between 
background and observation errors
Quality control needed to make errors more Gaussian
The evaluation of H(x) may involve time integration
Data assimilation requires cycling in time (and ideally updating of B)
The background can be thought of as a special set of observations

Where B=<eb(eb)T> background error covariances
R = <eo(eo)T> observation error covariances

1 11 1( ) ( ) ( )
2 2

T Tb b o oJ H Hx x x B x x x y R x y

Maximise P(x|y,xb) where y = H(x) + eo (observations) xb = x + eb (background)

In case of Gaussian errors in the first guess and observations minimise
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Met Office incremental 3D-Var

To make VAR more practical, we can approximate the penalty J in terms 
of increments         to a simplified model, and linearise about a guess 
state
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Variational data assimilation – inverse problem

VAR is an inverse problem: we don’t `interpolate’ observations onto the 
model grid, we vary the model state until we find that which is most 
compatible with the data, as defined by J.
We can assimilate variables not directly related to the model variables, 
as long as we can write a reasonably accurate observation operator.
For example, we can use satellite radiance measurements directly.
To minimise J, we use an iterative descent algorithm. On each 
iteration, the algorithm needs J and its gradient wrt x.
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Variational data assimilation – background error

The background error covariance matrix B describes the error variance 
for each model variable, and the correlations between errors in 
different model variables; ie. how information from observations should 
be spread:

Incorporating better approximations of the `true’ background error 
covariance matrix is perhaps THE most important theoretical challenge 
in data assimilation.
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B is NxN, where N is the number of (simplified) model variables.

In order to make B manageable, we need to make some assumptions.

Transform to variables that are approximately uncorrelated:
Transform to streamfunction, velocity potential, unbalanced pressure
and rh.
Project onto vertical modes.
Project onto horizontal spectral modes.

B is then diagonal, and easily dealt with.

Variational data assimilation – control variables
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Variational data assimilation

If the statistics of the background and observation errors were known, 
we could in theory use Bayes’ Theorem to deduce the PDF                    
and choose an appropriate analysis:

( )tp x x

Statistics are not known, and in general could not be represented 
anyway.
Need to make some assumptions.
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Generation of Background Errors - Not known so have to be estimated eg

NMC method
Statistics are gathered by comparing pairs of forecasts valid at the 
same time (eg. T+48 - T+24)

The statistics are climatological, and approximately homogeneous
and isotropic

can extend to vary latitudinally or use defined horizontal correlations

Idealised horizontal and vertical correlations

Ensembles of forecasts valid at forecast range of background

Analyses and Forecasts are very sensitive to specification of background 
errors variances, correlations and lengthscales

Variational data assimilation – modelling B
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Spreading information – background errors

Derived for
12km model
Used in 4km

5.78 km
Approx
500hPa

½ lengthscale

u v theta
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Spreading information – background errors
theta increment at 5.78km

Derived for 12km model ½ lengthscaletheta
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Spreading information – background errors
v increment at 5.78km

Derived for 12km model ½ lengthscalev
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Impact of S-band radial radar wind data
- radial wind on 1deg scan elevation

12km 
Back-
ground

Super-
obbed
Radar
Doppler
wind

½ Length scaleAnalysis

Reduced background wt
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Impact of S-band radial radar wind data
- radial wind on scan elevation

4km 
Back-
ground

Super-
obbed
Radar
Doppler
wind

½ Length scaleAnalysis

Reduced background wt
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Impact of S-band radial radar wind data
- T+2 surface pressure

Background forecast Including radar radial doppler winds
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Variational data assimilation  - observation error

R describes the observation error, which combines instrument error
and errors in the observation operator H (representativeness error):
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4D-Var – observation operator

In 4D-Var, the observation operator H includes model forecasts to the 
observation times:

Initial “background” forecast with nonlinear model 
3D-Var either one value at centre of time window or forecast at time of 

observation and analyse increments assuming valid at analysis time FGAT
Forecasts are updated with a simplified linear model; one forecast plus 

one adjoint integration per iteration. (Usually run about 50 iterations.)
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4D-Var – background error

In 4D-Var, the background error covariance matrix B is implicitly evolved 
by the linear model:

This imposes some degree of dynamical consistency on the increments, 
and is probably a key advantage of 4D-Var.

Pseudo pressure ob at beginning of window Pseudo pressure ob at end of window
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Observations: Bias Correction and Variational
Quality Control

The occurrance of observations with gross errors can 
be handled 

either in a prior Bayesian quality control, rejecting those not 
likely to come from the assumed Gaussian distribution 
characterising "good" observations
or by altering the variational penalty function to have a similar 

effect. 

In either method it is important to have a reliable 
estimate of the background error variance for that 
case, otherwise we can end up rejecting just those 
observations which show up a significant error in the 
background state.

Theory assumes unbiased data
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Observations: Quality Control

Conventional observations - Checks for:
Physically plausible
Position  (e.g. ships over land)
Track  (movement since last report)
Buddy checking  (against neighbours)
Model background O-B comparison
Rejection lists from regular monitoring (O-B, O-A)
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Satellite bias correction

Both background and observation can be biased

Correct for O-B difference bias
Recalculate each month
Vary strongly with scan position and latitude
Scan – difference from nadir
Airmass – linear regression
If not possible reject data

1 1 ..cor raw scan n n airy y c c y c y c
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Satellite quality control

Bad raw radiance T

O-B threshold test

Bad scan position

Masked out

Error in RTTOV

Failed to converge

High altitude

Bad retrieved brightness temperature
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Observations: Radar Errors

Is radar data biased? What does bias depend on?

Need to bias correct the data and quality control it either externally or using 
variational quality control eg as at ECMWF

How do we specify error variances for radar data?

Precipitation rates
Reflectivity
Doppler radial winds
Refractivity

Do we have an absolute measure?

However in fact the errors need to be relative to errors for background and 
other observation types (tuning)

Errors correlated as in satellite scans
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Observations: Radar Radial Wind Errors

Sources of error

Ground clutter, anomalous propagation, sea clutter, velocity 
folding, noise

Velocity gradient in pulse volume

?
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Superobbing of radar doppler winds

Raw data
Superobbed data
Difference from background
method

Superobbed data
Remapping method
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Errors of Superobbed radar doppler winds

Raw data
Superobbed data
Difference from background
Method – observation errors

Superobbed data
Remapping method
Total observation error
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Observations: Summary

Need sophisticated quality control

Need specification of error as variance/standard 
deviation in units of observation

Ideally need to allow for correlation of errors

Need to thin data or perform super-obbing
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High resolution data assimilation

4km 3D-VAR  with continuous cycles 

With or without moisture and Latent Heat Nudging (LHN) using AC scheme 

(referred to as MOPS data – moisture observation processing system)

IAU – increments output from 3D-Var and fixed over time window

AC scheme – increments depend on latest model fields so vary with 
timestep through weighting factor and model evolution/impact of data
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Moisture Observation Preprocessing 

Resolution:     15km,  3 hours  

(Testing 1 hour)

Surface 
reports

Satellite data Radar data

3D Cloud 
fraction

3D Relative 
humidity 

Nudge 
model state 

Precipitation
5km 
smoothed to 
15km 
Hourly
Testing 15min
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T-3 T-1 T+0 T+1 T+3

AC scheme/UM3D cloud fraction
Surface rainrate

IAU
3 hour f/c: background 
Hourly ModelOb

Nudging RH & Latent heat

T+2T-2
Next analysisPrevious analysis

Conventional
observations

3D-Var 
(FGAT)

Obs window

3D-Var system including MOPS RH and LH nudging via AC scheme
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Period over which observations and analysis increments are 
nudged into Unified Model



© Crown copyright 2005 Page 42

Impact of cloud and precipitation data

Radar
1 hour accumulation

T+2 forecast 
15min precip and hrly cloud

T+2 forecast 
No MOPS data

14UTC 25 August 2005 – CSIP IOP 18
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Impact of cloud and precipitation data

Skillscore for accumulation > 0.5mm

Skillscore for top 10%
accumulations

____ 15min precip, hrly cloud
reduced filtering

____ hourly precip, 3 hr cloud
full filtering

____ no precip and cloud 
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Impact of cloud and precipitation data
5 cases

Skillscore for top 10% accumulations Skillscore for top 10% accumulations
____cloud = 3hrs; rain = 1hr; no filter 
____cloud = 1hr; rain = 15min; no filter
____ cloud=3hrs; rain=1hr; no filter

diagnostic rain
____ cloud=1hrs; rain=15min; no filter

no subcloud LHN

____cloud = 3hrs; rain = 1hr; no filter 
____cloud = 1hr; rain = 15min; no filter
____ cloud=3hrs; rain=1hr

full filtering fwhm=42km
____ no precip and cloud 
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Impact of cloud and precipitation data

Radar
1 hour accumulation

T+2 forecast 
1km filter(no filter)
Cloud=3hr rain=1hr

T+2 forecast 
42km filter 
cloud=3hr rain=1hr

17UTC 25 August 2005 – CSIP IOP 18
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Conclusions

•Analysis is very sensitive to specification of background 
errors and observation errors

•Need to bias correct and quality control data

•Specification of errors tends to be a matter of tuning to find 
best overall forecast skill score

•Need careful balance of errors and data quantity for 
different data types to get best forecast
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Future directions

1. Dealing with model error. Statistical characteristics of model error are 
difficult to determine. However, relatively simple models may bring 
benefits.

2. Incorporating `errors of the day’. Ie. making the background error 
covariances more synoptically dependent. Also tying them to boundary 
layer depth.

3. Ensemble techniques – enables calculation of background error 
distribution/covariances – time evolving and allows for observation and 
forecast uncertainty

4. Variational quality control and bias correction
5. Specification of bias correction, quality control, thinning/superobbing, 

errors for radar doppler radar winds, reflectivity and refractivity data
6. Allow for correlated observation errors
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Questions & Answers
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