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Introduction

◮ Large potential of radar data for assimilation in
high-resolution NWP models.

◮ Météo-France is developing its future operational
high-resolution NWP model = Arome (planned to be
operational by 2008).

◮ Arome features:
◮ nonhydrostatic,
◮ high horizontal resolution (ca. 2.5 km),
◮ sophisticated microphysical scheme with 6 water
species (inherited from Meso-NH),

◮ 3DVar assimilation scheme (inherited from Aladin).

◮ Variational assimilation treats both observational and
model uncertainties.
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French radar network (Aramis)

10 Doppler
radars

1 polarimetric
radar

Planned by end-2007:

6 Doppler
radars

4 polarimetric
radars
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New format for radar data

For assimilation purposes, Météo-France is defining a new
format for radar data complying with OPERA BUFR:

◮ all fields on 1 km×1 km Cartesian grids,
◮ 80 levels for reflectivity (−10 to 70 dBZ ),
◮ Doppler winds from −60 to 60 m s−1 every 0.5 m s−1,
◮ all volume data in a single file: reflectivity, Doppler
winds and quality flags for all elevations.

Additional information is used: static maps of ground
clutter and partial masks are computed with the Surfilum
software (Delrieu et al., 1995) and accumulated rainfall
maps.
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Pre-processing of radar data (1/2)

(= before being stored in the observational database)

Spurious and/or bad quality data can have disastrous
effects on a weather forecast.
→ need for a strict pre-processing of data (+ quality
control during the assimilation step)

At Météo-France, the general approach is:
◮ to use as many raw data as possible (only isolated
echoes are removed; a corrective factor based on
comparisons with raingauge measurements is
applied),

◮ but associate informative quality flags.
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Pre-processing of radar data (2/2)
At present, we can detect and flag:

◮ sea and ground clutter,
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Pre-processing of radar data (2/2)
At present, we can detect and flag:

◮ sea and ground clutter,
◮ abnormal propagation for the
whole volume,

◮ sun light (under development),
◮ attenuation for each elevation
(for polarimetric radars only),

◮ clear sky echoes (for polarimetric
radars only),

but reliable methods still needed for:
◮ interferences with other radiative sources,
◮ chaff (thin bits of aluminum spread by military
devices), etc.

For Doppler velocities, dealiasing is performed by the
“triple-PRT” algorithm (Tabary, 2006).
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Introduction

Radar simulator developed for Meso-NH:
◮ can emulate reflectivities, Doppler velocities,
polarimetric parameters, etc.

◮ with different complexity levels,

Applications:
◮ verification of NWP models,
◮ specification of observation operators.
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Description of the radar simulator
Example for reflectivities:

Mj , P, T

model grid

Mj : hydrometeor contents (rainwater, snow, graupel,
pristine ice) with distributions following the model ones.
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Example for reflectivities:

2. Ray path

radio ray

radar pulse

hydrometeors

1. Antenna’s radiation pattern

radar

(C- or S-band)

3. Interpolation on ray path

Mj , P, T

model grid

Interpolation:
• bilinear

Mj : hydrometeor contents (rainwater, snow, graupel,
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Description of the radar simulator
Example for reflectivities:

2. Ray path

radio ray

radar pulse

4. Scattering by hydrometeors

hydrometeors

1. Antenna’s radiation pattern

radar

(C- or S-band)

3. Interpolation on ray path

Mj , P, T

model grid

Backscattering and attenuation:
• Rayleigh • Mie
• Rayleigh-Gans • T-matrix

Mj : hydrometeor contents (rainwater, snow, graupel,
pristine ice) with distributions following the model ones.
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Simulation of reflectivities

Bollène radar, 21 UTC 8 Sep 2002, 1.2◦-PPI:

Ground clutter
Area outside domain
of computation

no val

64 dBZ

56 dBZ

48 dBZ

40 dBZ

32 dBZ

24 dBZ

8 dBZ

simulated reflectivity

no val

64 dBZ

56 dBZ

48 dBZ

40 dBZ

32 dBZ

24 dBZ

8 dBZ

observation
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Simulation of Doppler velocities

Radial velocities (in m·s−1) as seen by the Arcis radar on
23 June 2005, at 16 UTC (1.1◦-PPI):

47.58

39.55

31.52

23.48

15.45

7.42

−0.61

−8.64

−16.67

−24.7

−32.74

−40.77

Observations Simulation
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Specification of observation operators

◮ For reflectivities: Rayleigh scattering, standard beam
curvature, beam broadening in the vertical.

◮ For Doppler velocities: similar to Hirlam’s one (Salonen
and Järvinen, 2005) but w/ standard beam curvature
(due to computational constraints).
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Introduction

Approach for assimilating reflectivities:
◮ Reflectivity is directly connected with hydrometeor
contents,

◮ But adjusting hydrometeor contents is not expected
to significantly improve forecasts (hydrometeors are
going to fall quickly)

◮ Modifying humidity, temperature, vertical velocity,
etc. is thought to have much more impact,

◮ ⇒ convert reflectivity columns into columns of
humidity, temperature, etc. (1D inversion)

◮ Then, assimilate these pseudo-observations with the
3DVar assimilation system.
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Overview of reflectivity assimilation

Zobse

pre-processing

Zobse columns
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Overview of reflectivity assimilation

Zobse

pre-processing

Zobse columns

Tfg + mixing ratios (rain, snow,
pristine ice, and graupel)

observation operator

Z fge columns
quality control
+ thinning

Z fge and Z
obs
e columns

1D retrieval
xfg = (qfg, Tfg,wfg, . . . )

columns

xpo = (qpo, Tpo,wpo, . . . ) columns

3DVar assimilation

xa = (qa, Ta,wa, . . . )

fg: first guess
po: pseudo-observations

a: analysis
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1D retrieval: theory

Bayesian method for each column:

xpo = E(x) =

∫

x P(x)dx ≃

∑

i

x
fg
i

exp
(

−
1
2
J

(

x
fg
i

)

)

∑

j

exp
(

−
1
2
J

(

x
fg
j

)

)

where
J(x)

.
= (yZ − HZ (x))

T
R
−1
Z

(yZ − HZ (x))

yZ : column of observed reflectivities,
x = (q, T ,w . . . ) : column of model variables,
HZ : observation operator,
RZ : error matrix for observed reflectivities and observation
operator.
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(yZ − HZ (x))

yZ : column of observed reflectivities,
x = (q, T ,w . . . ) : column of model variables,
HZ : observation operator,
RZ : error matrix for observed reflectivities and observation
operator.
Method unable to adjust q when observed Ze > 0 dBZ
and none simulated⇒ in this case we saturate levels
above the model condensation level.
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OSSEs: Principle
Reference exp=obs

analysis

First guess exp
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forecast
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1D retrieval: OSSE with Meso-NH (1/2)
Case study #1: thunderstorm on plain on 9 Oct 2004.

◮ Ref exp (= observations): starting from a mesoscale data
surface initialisation applied to Arpege analysis valid at 12
UTC,

◮ First guess exp: starting from Arpege analysis at 12 UTC
alone.
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1D retrieval: OSSE with Meso-NH (1/2)
Case study #1: thunderstorm on plain on 9 Oct 2004.

◮ Ref exp (= observations): starting from a mesoscale data
surface initialisation applied to Arpege analysis valid at 12
UTC,

◮ First guess exp: starting from Arpege analysis at 12 UTC
alone.

Reflectivities at 1615 UTC:

Reference (= observations) First guess
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1D retrieval: OSSE with Meso-NH (2/2)

Relative humidity (%) at 1615 UTC:

alt
4 km

Reference=obs First guess 1D retrieval

vertical
cross-
section
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Full 1D+3DVar OSSEs with Meso-NH/Aladin (1/2)
Case study #2: MCS on 8 Sep 2002.

◮ Ref exp (=obs):
◮ First guess:

}

Same as for case study #1

22 / 27



Full 1D+3DVar OSSEs with Meso-NH/Aladin (1/2)
Case study #2: MCS on 8 Sep 2002.

◮ Ref exp (=obs):
◮ First guess:

}

Same as for case study #1

1st step: 1D retrieval at 18 UTC (Bollène radar w/ 13 elev.):

first guess 1D retrieval observations

10-dBZ reflectivity contour (in red) superimposed on

relative humidity (%)
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Full 1D+3DVar OSSEs with Meso-NH/Aladin (2/2)
2nd step: 3DVar hybrid assimilation of pseudo-observed
humidity:

18UTC 18UTC 18UTC

19UTC 19UTC 19UTC

first guess 1D+3DVar analysis observations
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Full 1D+3DVar OSSEs with Meso-NH/Aladin (2/2)
2nd step: 3DVar hybrid assimilation of pseudo-observed
humidity:

18UTC 18UTC 18UTC

20UTC 20UTC 20UTC

first guess 1D+3DVar analysis observations
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Assimilation of reflectivities: Conclusions & Outlook

Conclusions:
◮ 1D retrieval able to add and remove humidity
according to observed reflectivities,

◮ 1D+3DVar assimilation exps do not blow up
numerically,

◮ for the 8 Sep 2002 case, need for a good low-level
initialisation to improve the analysis.

Future work:
◮ perform 1D+3DVar assimilation exps with real data
using a first guess that takes surface obs into
consideration.
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Assimilation of Doppler radial winds
Screening: Innovations for 1 elev. (w/o thinning).
Case #3: 10 Aug 2004 at 3 UTC (Trappes radar).

observations first guess

innovations
active observations
(∆vr < 10 m s−1)
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Summary & Outlook

◮ active research undertaken to characterize radar
data quality;

◮ the 1D+3DVar algorithm is functional (for
Meso-NH/Aladin); further tests needed to tune quality
flag and 1D inversion thresholds; technical
implementation for Arome needs to be done;

◮ Doppler wind assimilation just started; coding of
tangent linear and adjoint codes of the observation
operator for Doppler velocities under way; thinning (≈
superobservations) to be done; run assimilation
experiments. . . .
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