

## MOGREPS – Met Office Short-Range Ensemble Prediction System

Ken Mylne, Neill Bowler, Alberto Arribas, Kelvyn Robertson, Sarah John and Tim Legg

**Ensemble Forecasting Group** 

Thanks also to: Dave Goddard, Ian Pearman, Clare Bysouth, Paul Maisey and many others!





- Motivation and strategy
- Products and feedback
- Initial condition perturbations
- Stochastic physics components
- Early verification results

### ECMWF Ensemble prediction System (EPS)





#### Carlisle storm, Jan 05, from ECMWF 51-member medium-range ensemble

COST731 Vilnius, 27 April 2006

### MOGREPS – The Met Office short-range Ensemble

NAF



- Ensemble designed for short-range
  - Regional ensemble over N.
     Atlantic and Europe (NAE)
  - Nested within global ensemble
  - ETKF perturbations
  - Stochastic physics
  - T+72 global, T+36 regional
  - Aim to assess uncertainty in short-range, eg.:
    - Rapid cyclogenesis
    - Local details (wind etc)
    - Precipitation
    - Fog and cloud





MOGREPS is on Operational Trial for 1 year from September 2005

### **MOGREPS** Operational System diagram





# **Product Examples**

## **Example MOGREPS 36h Rainfall forecast**





© Crown copyright 2006

COST731 Vilnius, 27 April 2006

## Example MOGREPS 33h 10m WS forecast







## Global T+42 forecast for 06Z on 19/10/05





### NAE T+36 forecast for 06Z on 19/10/05





© Crown copyright 2006

COST731 Vilnius, 27 April 2006

Page 11

## Global T+42 forecast for 06Z on 19/10/05





### NAE T+36 forecast for 06Z on 19/10/05





© Crown copyright 2006

COST731 Vilnius, 27 April 2006

Page 13

## **MOGREPS Site-specific forecasts**



### EPS Meteogram

### MOGREPS Plume



#### Kalman filter MOS is being implemented for MOGREPS forecasts

#### MOGREPS Global EPS Meteogram EXETER HQ SITE (99085) 50.7° N 3.5° W RAW - EPS Forecasts : 27 July 2005 00 UTC



© Crown copyright 2006

## Feedback Quotes from Forecaster Trial



### Positive

- probs for visibility were useful
- ensemble appears to give useful guidance on risk of fog and frost under anticyclone
- Modified towards deeper low off NW Scotland
- Prob field for 6hour > 0.3mm very good in highlighting areas at risk.

### Negative

- Point probs too small need areal probs.
- spread of mslp values in UK ridge seems a little too large

# Initial Condition Pertubations -ETKF

### **Ensemble Transform Kalman Filter (ETKF)**



- Simplified version of Ensemble Kalman Filter
  - Data assimilation scheme
- Do not try to update ensemble mean, only to chose appropriate perturbations
- Accounts for the observations in choosing a method for re-scaling the perturbations
- New analysis perturbations are transformed as

$$\mathbf{X}^{a} \quad \mathbf{X}^{f}\mathbf{T}$$

Perturbations are applied to U, V, T, P, q (no perturbations to q<sub>cl</sub>, q<sub>cf</sub>, SST or land-surface)

## **Error Breeding**





T+12 perturbed forecast

)\*F

T+12 control forecast





Perturbed analysis

### **Ensemble Transform Kalman Filter (ETKF)**





## Why we chose the ETKF



- We have developed an ensemble for shortrange forecasting (0-3 days) and EnKF quantifies the errors in the analysis
- ETKF is a computationally efficient way of updating ensemble perturbations
- Studies have shown that ETKF is superior to error breeding

# **Perturbation structure**

### Perturbation Structures – Mean and spread PMSL







### Perturbation Structures – Mean and spread PMSL

2

4



 Spread tends to be concentrated around fronts and sharp gradients

 Perturbation is nonzero everywhere (in contrast to SVs)



8

10

12

14

6

## **Vertically integrated total energy**



Met Office

## **Total energy cross-section**





## **Total Energy with height**





This, and following data, is calculated based on all ensemble members

# **Stochastic Physics**

## Stochastic physics in MOGREPS



MOGREPS employs three schemes to address different sources of model error:

- Random Parameters (RP)
  - Error due to approximations in parameterisation
- Stochastic Convective Vorticity (SCV)
  - Unresolved impact of organised convection (MCSs)
- Stochastic Kinetic Energy Backscatter (SKEB)

Excess dissipation of energy at small scales
 Impact is propagated to next cycle through the ETKF

## **Stochastic scheme for the UM**



### **The Random Parameters**

| Parameter             | Scheme        | min/std/Max       |
|-----------------------|---------------|-------------------|
| Entrainment rate      | CONVECTION    | 2/3/5             |
| Cape timescale        | CONVECTION    | 30 / 30 / 120     |
| Rhcrit                | LRG. S. CLOUD | 0.6 / 0.8 / 0.9   |
| Ice fall              | LRG. S. CLOUD | 17 / 25.2 / 33    |
| Flux profile param.   | BOUNDARY L.   | 5 / 10 / 20       |
| Neutral mixing length | BOUNDARY L.   | 0.05 / 0.15 / 0.5 |
| Gravity wave const.   | GRAVITY W.D.  | 1E-4/7E-4/7.5E-4  |
| Froude number         | GRAVITY W.D.  | 2/2/4             |

These parameters are treated as stochastic variables:  $P_t = \mu + r(P_{t-1} - \mu) + \varepsilon$  with r = 0.95



### The SCV component (Gray and Shutts, 2002)



In the SCV scheme the PV dipole is formed by two vortices which scales are determined by a randomised function

## **RP+SCV in MOGREPS**



2004012700Z - T+72



# **RP+SCV** in **MOGREPS**



### **500 hPa Geopotential height**



COST731 Vilnius, 27 April 2006





### Stochastic Kinetic Energy Backscatter (Arribas and Shutts)

- Aim: To backscatter (stochastically) into the forecast model some of the energy excessively dissipated by it at scales near the truncation limit. (similar to ECMWF's CASBS by Shutts)
- A total dissipation of 0.75 Wm-2 has been estimated from the Semi-lagrangian and Horizontal diffusion schemes.

$$F = \frac{KE R(,)}{KE R(,)}$$

- $\alpha$ .- Tunable amount of energy feedback
- KE.- Kinetic Energy
- R.- Random field
  - .- Time-step





### KE modulation: u incr. at 500 hPa





Positive increase in spread (comparable to that seen at ECMWF)



## **SKEB.** Preliminary results



Better representation of forecast spectra



T731 Vilnius, 27 Aprii ∠000

# Verification





- Verification to date is very basic
- Verification performed over NAE area for forecasts from global ensemble
- Performed (except where stated) against analysis
- •For 111 cycles between 17/10/05 and 9/1/06

### 500hPa height – spread and RMSE



 Spread growth is slower than error growth

SKEB should improve this

- Spread optimised by variable inflation factor against observations in *u*, *v*, *T* and *RH* at T+12
  - Appears too large because verified against analysis

#### Spread and RMSE for 500hPa GPH



### 500hPa height – RMSE (part 2)





#### RMSE for 500hPa GPH

© Crown copyright 2006

COST731 Vilnius, 27 April 2006

## 500hPa height – rank histogram



## Rank histogram is encouragingly flat Close to ideal

 Suggests that ETKF perturbations are representative of genuine analysis errors

 This performance seems much improved on ECMWF ensemble

#### Rank Histogram at T+72 for 500hPa GPH











Average for Jan 2006 RMSE for T at 850 hPa, T+72h forecast





### Average spread with latitude 500hPa height





Inflation factor chosen to get correct spread over extratropics Due to growth rate of perturbations, spread too large nearer poles

### Spread – skill relationship





 Good relationship between spread and RMSE

 Note that perfect ensemble (with 23 members) would not lie on diagonal





Calculate the ETKF transform matrix, only using observations within a certain radius of a given "localisation centre"
Interpolate transform matrix between localisation centres



- Similar idea to LEKF developed at Maryland
- Warning: Inflation factors can be troublesome

## Local ETKF performance



Reduces spread in higher extra-tropics, and increases spread near tropics
Rank histograms improve, even when spread is reduced



## Katrina – MOGREPS forecasts





© Crown copyright 2006

COST731 Vilnius, 27 April 2006

## Katrina – NHC warning





Page 50

## **MOGREPS** Status



### MOGREPS started operational trials in September

- Trials scheduled to run for 12 months
- Objective verification and forecaster assessment
- So far, performance has been good
- Further science upgrades planned
  - SKEB
  - Local ETKF and Regional perturbations for NAE
- MOGREPS cannot yet be used operationally
  - Could be operational later in 2006/07 subject to satisfactory performance in trial

# Any questions?