•••• PROBABILISTIC APPROACH IN COMPARATIVE VERIFICATION OF HIGH RESOLUTION MODELS

Kees Kok KNMI (special thanks to Maurice Schmeits)

- 1. INTRODUCTION
- 2. WHY PROBABILITIES
- 3. THEORETICAL EXAMPLE
- 4. STATISTICAL POST-PROCESSING
- 5. DESIGN OF POSSIBLE EXPERIMENT
- 6. CONCLUDING REMARKS

EVENT BASED METHODS

- * Intensity and Phase error
- * CRA
- * Displacement, volume and pattern error

WHY PROBABILITIES?

- KNWI KNWI
- * They may be useful to estimate the "predictive potential"
- * The uncertainty inherent in forecasts can be expressed in a quantitative and unambiguous mann
- * Especially important for smaller time and/or length scales
- * Economic value, C/L ratio
- They may provide a useful tool in comparative verification

••••

- Consider precipitation in x-direction
- * LRM vs HRM
 - HRM equal to LRM but with one additional small scale cos-wave
 - Observations have the same resolution as HRM
- * Assume perfect predictability for the LRM-scales
- * Look at consequences in the HRM of <u>known</u> uncertainty (equally probable within fixed range) of phase and amplitude of small scale wave

* Consider P(RR>RR0) and observed frequency = 1/3

* Verify with Brier Score

$$\frac{1}{N} \prod_{n=1}^{N} (p_n - o_n)^2$$

Phase Error

KNMI

 $\bullet \bullet \bullet \bullet$

ΛΙ

- * Large data sets
- * Huge set of potential predictors
- * Derive statistically significant predictors
- * Test the resulting equations on independent data

Koninklijk Nederlands Meteorologisch Instituut

Offers estimate of "predictive potential"

- * The uncertainties inherent in forecasts can be taken into account
- * Forecasts are reliable
- * Objective

••• **DISADVANTAGES**

- * Large data sets needed
- * You never know that you can't do better
- * Difficulties with rare events

....

Regional probabilistic short range forecast system for (extreme) convective weather

- * Not only DMO is important in verification but also the "predictive potential" of the model
- * Assessing this predictive potential can best be done by means of probabilities
- * A way to do that is by statistical post-processing
- * (Comparative) verification should include statistical processed model output

Koninklijk Nederlands Meteorologisch Instituut

