

Experiences in Calibration of EPS forecasts

Juha Kilpinen

Different sources of uncertainty

- Observations (special focus on wind speed observations)
- Uncertainty associated coarse grid
- Model deficiencies
- Calibration of uncertainty (EPS forecasts)

Experiences in Calibration of EPS forecasts

- Only ECMWF EPS and operational forecasts evaluated
- Parameters: 10m wind speed, 2m temperature and mslp
 - Mismatch between observations and forecasts due to low model resolution
 - Wind speed observations are problematic (orography, environment)
 - Only (the difficult ?) surface parameters considered ->
 - Need of calibration

Verification results of deterministic mslp forecasts

RMS Error ECMWF: •operative •control •eps mean •eps spread •clim (4 years) •mean of indiv. eps members

Comments for mslp forecasts

- nice behaviour in lead time
- Spread is realistic compared to error distribution of EPS mean -> EPS provides a useful and almost optimum probability forecasts for mslp (no real need for calibration)

Temperature forecasts

- Both OPERATIONAL and EPS forecasts suffer from biases (stable stratification)
- EPS forecasts are under dispersive
 - -> need of calibration

EPS wind speed forecasts

More detailed a examination

Wind speed forecasts

- Representation missmatch (grid)
- Height of the anemometer
- Stratification (stable conditions,)

Verification scores:

- Deterministic forecasts: ME, RMSE, (STDE)
- Probabilistic forecasts: ROC AREA, BRIER SKILL SCORE

Operative forecasts and observations

FMI has a correction system for wind speed observations

Reduction of wind speed due to anemometer height (neutral stratification)

Correction of wind speed due to obstacles around the site (direction dependent)

station 02987 (Kalbådagrund)

9

Operative forecasts and observations (02987)

Total correction as a function of direction

Correction coefficient of wind speed as function of direction (02981)

Next some verification results

"Corrected" observations

MEAN ERROR (ME) WINTER 2004 STATION: 02981 VALID: 12 UTC

"Corrected" observations

ROOT MEAN SQUARED ERROR (RMSE) WINTER 2004 STATION: 02981 VALID: 12 UTC

Conclusions 1:

- Corrected observations for station 02987 give better verification results than original
- But for station 02981 the situation is opposite

• What is the reason for that?

ILMATIETEEN LAITOS METEOROLOGISKA INSTITUTET FINNISH METEOROLOGICAL INSTITUTE

02981 UTÖ

UTÖ / September 04 Upper picture E-SE Lower picture SE-S sector

ILMATIETEEN LAITOS METEOROLOGISKA INSTITUTET FINNISH METEOROLOGICAL INSTITUTE

New radar mast south to wind mast. Antennas remain partly under anemometers.

Conclusions 2:

• What is the reason for that?

- The correction was update in 2002
- After summer 2004 a new mast was built to southern sector very near to anemometer and no update for correction has made

Anemometers

->corrections should be updated

Verification of probability forecasts

- Brier Skill Score (BSS)
- ROC (Relative Operating Characteristic) curve
- ROC Area (Area under ROC curve)

20

Calibration of EPS forecasts

- Production of probability forecast from deterministic input (as reference)
 - Different versions of error dressing method
 - Kalman filtering (results nor shown)
- Different methods for calibration of EPS wind speed forecasts

NEXT SOME RESULTS (BBS, ROC Area)

Uncorrected observations

BRIER SKILL SCORE (BSS) P(WS > 14 m/s) WINTER 2004 STATION: 02981 VALID: 12 UTC

Corrected observations

BRIER SKILL SCORE (BSS) P(WS > 14 m/s) WINTER 2004 STATION: 02981 VALID: 12 UTC

Uncorrected observation

Corrected observation

BRIER SKILL SCORE (BSS) P(WS > 14 m/s) WINTER 2004 STATION: 02987 VALID: 12 UTC

Uncorrected observations

Corrected observation

ROC AREA P(WS > 14 m/s) WINTER 2004 STATION: 02981 VALID: 12 UTC

Uncorrected observation

Corrected observation

ROC AREA P(WS > 14 m/s) WINTER 2004 STATION: 02987 VALID: 12 UTC

Original observations

"Corrected" observations

ROC AREA P(WS > 14 m/s) WINTER 2004_cor STATION: 5 VALID: 12 UTC

ROC Area

BBS

Conclusions 2:

- Verification of probability forecasts give similar results as deterministic verification
- Calibration of EPS forecasts increases the general skill of EPS wind forecasts
- Error dressing of deterministic forecasts better than calibrated EPS before day 5. After 5 day calibrated EPS is better.

ILMATIETEEN LAITOS METEOROLOGISKA INSTITUTET FINNISH METEOROLOGICAL INSTITUTE

Thank you

Observation noise

Fri Apr 21 07 45 20 2006

Series Plot (observations every 10 min)

Mean of 12 observations around 12 UTC: comparison with 12 UTC observation

Series Plot (observations every 10 min)

	OBS 12	Mean	STD1	STD2
N of cases	151	151	151	151
Minimum	1.600	1.425	0.002	-1.825
Maximum	17.000	17.067	0.777	2.008
Range	15.400	15.642	0.775	3.833
Sum	1177.000	1173.667	28.367	3.333
Median	7.300	7.158	0.149	0.017
Mean (std within sample)	7.795	7.773	0.188	0.022
95% CI Upper	8.414	8.394	0.214	0.093
95% CI Lower	7.176	7.151	0.161	-0.049
Std. Error	0.313	0.315	0.013	0.036
Standard Dev (between 12 UTC obs and mean obs)	3.849	3.865	0.165	0.441
Variance	14.814	14.940	0.027	0.195
C.V.	0.494	0.497	0.876	19.986
Skewness(G1)	0.498	0.494	1.314	0.247
SE Skewness	0.197	0.197	0.197	0.197
Kurtosis(G2)	-0.642	-0.732	1.611	3.927
SE Kurtosis	0.392	0.392	0.392	0.392
SW Statistic	0.956	0.951	0.877	0.950
SW P-Value	0.000	0.000	0.000	0.000

This part of observation noise is fairly small

Observation noise: std1 and std2

