Verification of hydrological ensemble forecasts

Emmanuel Roulin

Royal Meteorological Institute of Belgium

Joint COST Action 731 and NetFAM Workshop on Uncertainty in High-Resolution Meteorological and Hydrological Models Vilnius, Lithuania, 26-28 April 2006

Overview

- Hydrological ensemble forecasts
- Verification methods
- Operational procedure
- Conclusions

Hydrological ensemble forecasts

- Hydrological model « SCHEME » (SCHElde & MEuse River Basins)
- Ensemble Prediction System ECMWF
- Probability forecasts
- Two test catchments

- Hydrological model « SCHEME »
 - Based on "IRMB" conceptual model (Bultot and Dupriez, 1976) applied on a grid with 7 7 km²
 - Routing module based on "width function"
 - Optimization of model parameters (SCE-UA)
 - Regionalization: ANN models between parameter values and physiographic indices
 - Daily time step

- "IRMB" conceptual model applied on 7 7 km²

- Model parameters optimized & regionalized

Routing parameters on catchments > 500 km²

- Ensemble Prediction System ECMWF
 - Use of archived forecasts since December 1996
 - Horizontal resolution: 120 km, 80 km (Nov. 200), 50 km (Feb. 2006)
 - Direct use of precipitation

Probability forecast

– EPS + SCHEME = 51 hydrograms probability to exceed a threshold (e.g. P95)

- Two test catchments
 - Démer at Diest (1775 km²), Ourthe at Tabreux (1616 km²)

Verification methods

- Rank histogram
- Distribution Oriented approach
- Relative economic value

- Rank histogram
 - Rank histogram (e.g. Talagrand et al., 1997)
 - event x and each forecast f_i equally plausible*
 - Correction (Hamill and Colucci, 1997)

•
$$P(x < f_i) = R_j$$

 $j=1 i$

- below the lowest ensemble member : uniform
- beyond the highest ensemble member : Gumbel distribution
- Example: Ourthe (Nov 2000 Mar 2004)
- * Here, the reference streamflow is simulated using observed precipitation.

- Example: Ourthe, threshold 6 mm, winter

- Distribution Oriented approach
 - Joint distribution of forecast and observations
 - Brier Skill Score
 - Calibration-refinement factorization
 - Likelihood-base rate factorization

- Joint distribution of forecast and observations

- f : forecast = probability that P or Q > threshold = (# members with P or Q > threshold) / size of ensemble
- x : observation = 1 if P or Q > threshold, otherwise, x = 0
- Thresholds based on [1971-2000], in mm day-1

	P80	P90	P95
P Demer	3.6	6.5	9.8
P Ourthe	4.7	8.3	12.2
Q Demer	0.8	1.1	1.5
Q Ourthe	1.8	2.8	3.9

- Brier Skill Score
 - Brier Score or mean square error $MSE(f,x) = E(f - x)^2$
 - Brier Skill Score relative to the "sample climate" or ²_x = p (1 - p) BSS = 1 - MSE(f,x) / ²_x

- BSS: EPS precipitation

BSS: Streamflow with precipitation from climatology

- BSS: Streamflow with EPS precipitation

- Calibration-refinement factorization
 - p(f,x) = p(x|f) p(f)
 - Decomposition of the mean square error:

 $MSE(f,x) = E(f - x)^{2} = {}^{2}_{x} + E({}_{x|f} - f)^{2} - E({}_{x|f} - {}_{x})^{2}$

 $- 2_{x}$: uncertainty

- $E(x_{if} f)^2 = REL : reliability (conditional bias)$
- $E(x_{|f} x)^2 = RES : resolution$
- Skill score relative to the "sample climate" (^{2}x)

- BSS = 1 - MSE(f,x) / ^{2}x

– BSS = RRES - RREL

- Likelihood-base rate factorization
 - p(f,x) = p(f|x) p(x)
 - Decomposition of the mean square error:

$$MSE(f,x) = E(f - x)^{2} = {}^{2}_{f} + E({}_{f|x} - x)^{2} - E({}_{f|x} - {}_{x})^{2}$$

 $- 2_{f} = SH$: sharpness

- E(
$$_{f|x}$$
 - x)² = TY2 : type II conditional bias

$$- E(f_{|x} - f_{|x})^2 = DIS : discrimination$$

• Skill score relative to the "sample climate" (^{2}x)

$$-BSS = 1 - MSE(f,x) / _{x}^{2}$$

- BSS = 1 + RDIS - RSH - RTY2

- Example 1: corrected ensemble (see above, Ourthe during winter, from Nov 2000 to Jul 2004, threshold: streamflow above 6 mm)
- Example 2: comparison of ensemble streamflow with streamflow forecast using precipitation from the ECMWF deterministic, the EPS ensemble average and the EPS control (threshold 4 mm)
- Example 3: uncertainty associated to the value of hydrological parameters (in progress: uncertainty about only 1 parameter) (Demer)

ensemble

corrected ensemble

- Relative economic value
 - Static cost-loss model (Richardson, 2000)
 - C: cost of action
 - L: loss if the event occurs and no action is taken
 - L1: part of the loss prevented by taking action
 - o: fraction of occasions when the event occurs
 - Minimize the expense E:
 - Eclim = min { C + o (L − L1), o L }
 - Eperf = o(C + L L1)
 - Relative value:
 - V = (Eclim Efor) / (Eclim Eperf)

- Relative economic value
 - Deterministic forecast system
 - H : hit rate
 - F : false-alarm rate
 - = C / L1, cost-loss ratio
 - Relative value

- Probabilistic forecast
 - pt : threshold probabilty

– Hydrological ensemble, 4 mm (P95), D+6

- 4 mm (P95), D+6

Operational procedure

- HEPDO project
- Validation
- Verification

- HEPDO project
 - "Hydrological Ensemble Prediction for the Demer and the Ourthe": setting-up an automatic operational procedure
 - EPS precipitation but also temperature, wind speed etc. to estimate potential evapotranspiration and account for snow accumulation and melting
 - Use of precipitation data available operationally: weather radar and automatic weather stations to update the water content of the conceptual reservoirs

 Demer in December 2005; left: with radar data only; right: with raingauge data during November and then, with radar data; in progress: with combined radar data and available raingauge data

- Proposed for validation to:
 - Weather forecasters : maps with probability of precipitation
 - Regional authorities in charge of water management : web page with ensemble precipitation and probability of streamflow > P95

- Verification
 - Comparison with measured streamflow
 - New EPS resolution: small sample size

- Reliability diagram for precipitation (Demer), P80

Conclusions

- Hydrological ensemble predictions have skill and value for early warning
- Need to define the probability threshold for a specific management situation
- Improve verification methods for rare events and small data sample
- Investigation on effect of uncertainties on the aspects of forecats quality