

The role of snow-surface coupling, radiation and turbulent mixing in modeling a stable boundary layer over Arctic sea-ice

Marina Sterk Gert-Jan Steeneveld Bert Holtslag

Submitted to JGR-A

 Evaluate knowledge gaps in Stable Boundary Layer (SBL) physics

ecearth.knmi.nl (CY33R1 H-tessel)

 Evaluate knowledge gaps in Stable Boundary Layer (SBL) physics

Motivation

- Evaluate knowledge gaps in Stable Boundary Layer (SBL) physics
- Which physical processes can cause these biases?

Physical processes

• Possible physical processes for bias:

- Vertical exchanges (turbulent mixing)
- Atmosphere soil / ice interactions (coupling)
- Radiative effects (radiation)
- Non-linear feedbacks

1. Study variability within the model using different schemes for physical processes

2. Perform sensitivity analysis by changing parameter settings

Use single column model

high vertical resolution possible, easier controllable, fast runs

WRF SCM study inspired by GABLS1

Initial idealized SBL case

- q = 0.5 g/kg up to 4 km
 T_{ice} = 265 K
- 9h forecast, night time

Beare et al., 2006 Cuxart et al., 2006 Kosovic and Curry, 2000 BASE

WRF SCM study inspired by GABLS1

Initial idealized SBL case

- q = 0.5 g/kg
 up to 4 km
 T_{ice} = 265 K
- 9h forecast, night time

Extend GABLS1 case:

- Coupled surface, radiation included
- 200 atmospheric layers, 4 ice layers
- z₀ = 0.5mm

Beare et al., 2006 Cuxart et al., 2006 Kosovic and Curry, 2000 BASE

Vary main schemes of SBL: simple \longleftrightarrow more complex

- BL: YSU, MYJ, QNSE
- LWrad: GFDL, RRTM, CAM
- LSM: NOAH

Vary main schemes of SBL: simple \longleftrightarrow more complex

- BL: YSU, MYJ, QNSE
- LWrad: GFDL, RRTM, CAM
- LSM: NOAH

Adjustments in YSU:

- Limit to u_∗: 0.1 → 0.001 (Jiménez et al., 2011)
- Stability function: 1 + 5 z/L (Troen and Mahrt, 1986)

Vary main schemes of SBL: simple \longleftrightarrow more complex

- BL: YSU, MYJ, QNSE
- LWrad: GFDL, RRTM, CAM
- LSM: NOAH

Results 0 profile

- Large differences between the BL-schemes
- Different profile shapes

Vary main schemes of SBL: simple \longleftrightarrow more complex

- BL: YSU, MYJ, QNSE
- LWrad: GFDL, RRTM, CAM
- LSM: NOAH

Results 0 profile

- Large differences between the BL-schemes
- Different profile shapes

At first sight BL scheme seems most important

Sensitivity analysis

• For the YSU-RRTM runs vary parameter settings

Run	Process	Parameter
K	Mixing in BL only	Eddy diffusivity K
K_Chm	Mixing in BL and surface layer	Eddy diffusivity K, exchange coefficients C
λ	Coupling	Ice conductivity λ
q	Radiation	Specific humidity q to influence L↓

Multiply parameters by:

- K, K_Chm, λ: 0.25, 0.5, 2 and 4
- q: 0.5, 0.67, 1.5 and 2

Results - Process diagram ugeo = 8 m/s

Results - Process diagram ugeo = 8 m/s

Results - Process diagram ugeo = 8 m/s

Results - Process diagram ugeo = 8 m/s

Result sensitive to consistently linking surface layer and boundary layer MYJ GFDL MYJ CAM K↓ $K_Chm\downarrow$ QNSE RRTM -40 <Q*>_{9h} (W m⁻²) QNSE GFDL QNSE CAM 0.25 K Chm 0.5 K Chm K_Chm K Chm KΥ 0.25 K -60 0.5 K 2 Κ 4 Κ K_Chm↑ -80 Warm surface 250 255 260 $< T_{2m} >_{9h} (K)$

Results - Process diagram ugeo = 8 m/s

Results - Process diagram ugeo = 8 m/s

The overlapping processes are not the same for various sets of variables!!

 \rightarrow Processes should not be studied in isolation

Geostrophic winds in the Arctic

- ERA-Interim reanalysis data:
 - Latitudes > 75°N
 - Winter: DJF
 - Years 1979 2010

4

Δ

q

Results - non-linear behavior

• At very light wind speeds, little cold is lifted due to mixing \rightarrow low T_{skin}

• Similar results found by McNider et al. (2012) for various geostrophic wind speeds

Results - non-linear behavior

- At very light wind speeds, little cold is lifted due to mixing \rightarrow low T_{skin}
- Exponential θ profile:

When mixing increases, cold air from the surface is mixed aloft $\rightarrow T_{skin} \uparrow, T_{2m} \downarrow$

• Similar results found by McNider et al. (2012) for various geostrophic wind speeds

Results - non-linear behavior

- At very light wind speeds, little cold is lifted due to mixing \rightarrow low T_{skin}
- Exponential θ profile:

When mixing increases, cold air from the surface is mixed aloft $\rightarrow T_{skin} \uparrow, T_{2m} \downarrow$

• Mixed θ profile:

When mixing increases, warm air from aloft is able to reach lower layers $\rightarrow T_{2m} \uparrow$

• Similar results found by McNider et al. (2012) for various geostrophic wind speeds

Summary / conclusion

- Which are the most dominating processes for different wind regimes?
 - Low wind speed: thermal coupling and radiative effect appear more important (mixing if also in surface layer)
 - High wind speed: turbulent mixing becomes more significant

Summary / conclusion

- Which are the most dominating processes for different wind regimes?
 - Low wind speed: thermal coupling and radiative effect appear more important (mixing if also in surface layer)
 - High wind speed: turbulent mixing becomes more significant
- Non-linearity for low and most freq. occurring ugeo
 - Temperature close to the surface decreases with increased mixing
 - Related to the shape of the potential temperature profile

Thank you for your attention!

Results - wind speed / mixing

Low wind speeds:

- All mixing strengths show this behavior
- Appears dependent on vertical θ profile:
 - Left of T_{min}: exponential
 - Right of T_{min} (for 1 and 4 K_Chm): better mixed

Results - wind speed / mixing

For decreased mixing strength:

- Difference in profile shape not clear
- Though temperature gradient decreases for increasing u_{geo} and more efficient downward mixing from higher levels

 $H = -\rho c_p K_h \frac{\partial \theta}{\partial z}$

 $H = -\rho c_p C_h u(\theta_1 - \theta_s)$

Coupling and radiation processes overlap

OLD

NEW

Results - \theta profile: u_{geo} = 8 \text{ m/s}

Results - u_{tot} profile: u_{geo} = 8 m/s

Non-linearity in observations

- Lüpkes et al. (2008) using SHEBA data:
 - Minimum T at 10m not observed for very calm conditions, but for wind speeds of 4 m/s
- Acevedo and Fitzjarrald (2003) using SBL measurements in Albany:
 - Wind below 1.5 m/s only mix air downward \rightarrow cooling
 - Higher wind speeds mix with higher levels \rightarrow warming