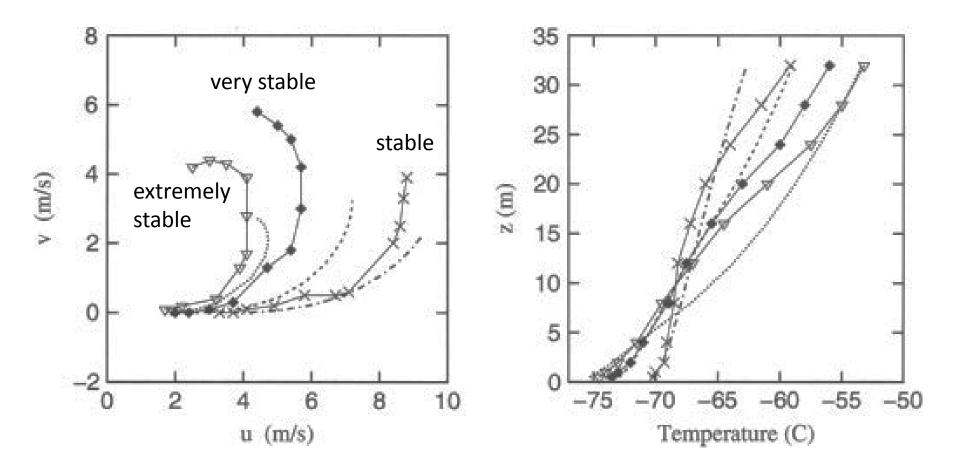
High resolution simulations of the night-time stable boundary layer over snow

Hannu Savijärvi University of Helsinki

Motivation

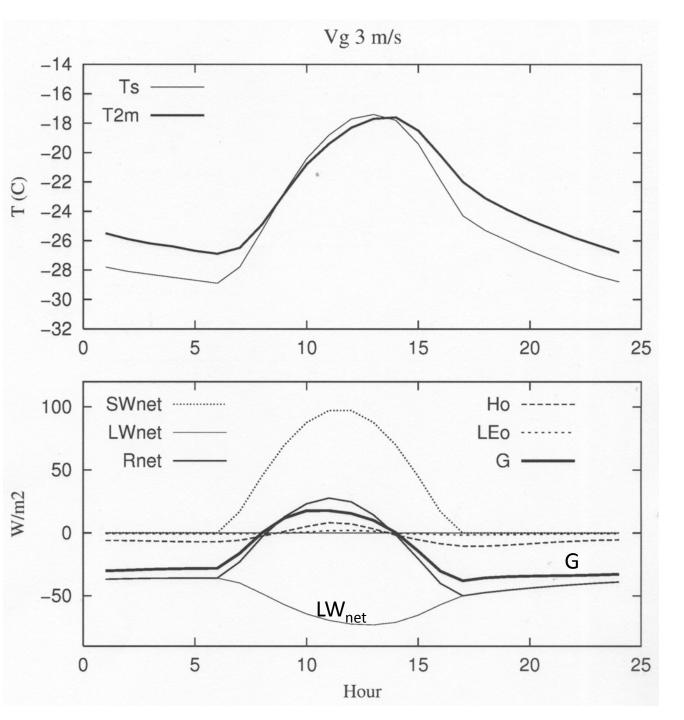
- SBL problematic to understand and model
- GCMs: large T_s errors in polar areas
- NWP: warm biases in cold conditions (T2m < -20°C; Atlaskin and Vihma 2012)
- Snow: good insulation, high thermal inertia \rightarrow low night-time T_s, very stable BL, large NWP biases
- How important is Q_{rad} vs Q_{turb} in the SBL, and why?
- \rightarrow High-resolution idealized 1-D experiments over snow.
- Vary the wind speed V_g , look for T(z), V(z), $Q_{rad}(z)$, $Q_{turb}(z)$, H₀.
- Vary the snow scheme & snow properties.


1-D BL model (1)

- 1-D, constant V_g, 10 s time step
- Grid: 0.1 m, 0.3 m, 1, 2, 5, 10, 22 m, ... 30km
- LW rad: narrow band model (67 bands, LBL-validated) SW rad: HIRLAM-type
- Turbulence: mixing length Blackadar closure, λ 150 m,
 f(Ri) = 'short tails' for Ri > 0, Dyer-Businger for Ri < 0
- Cloud physics: saturation at RH 105% (→ diamond dust in cold air, sedimenting down as observed)

BL model (2)

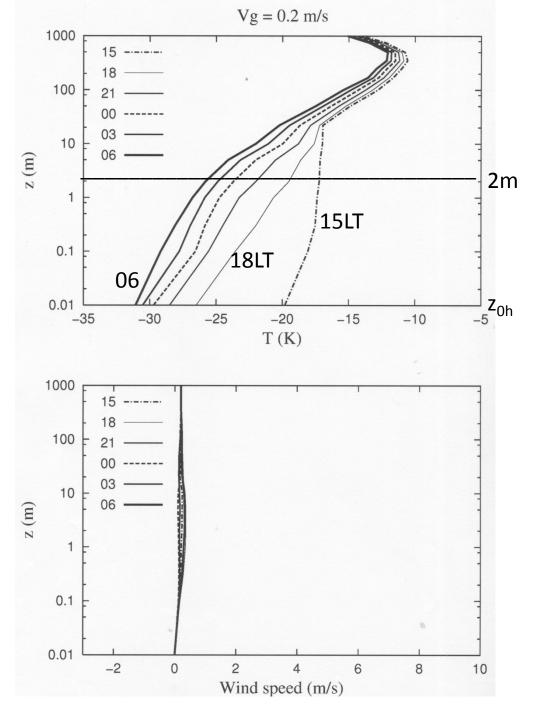
- Snow: thermal diffusion (Crank-Nicholson). Five optimized depths: 0, 0.87, 1.85, 6.65, 18.8 cm.
 Deep snow: T = T_{ds} = const
- Scheme max T_s error < 1% of amplitude for diurnal square wave forcing (cf. 14% in a coarse force-restore, 3% in a 50 layer 0.5 cm gridlength scheme)
- 1-D model tested in midlatitude summer (2006 QJ), in Antarctic winter (2009 QJ)


(and in Mars' very stable nighttime BL: 1-S model vs. Phoenix observations (2010 QJ), vs. Spirit obs (2008, 2012 QJ))

Antarctic High Plateau Station 0-32 m winter mean temperatures and wind hodographs in three stability categories (from King and Turner, 1997) with 1-D simulations (S 2009 QJ) (non-flat areas & high Ri \rightarrow local drainage winds \rightarrow K=K($\sigma(z_s)$)

Present test case

- 67°N, clear-sky early March, snow-covered (50 cm) homogeneous field with typical snow ($z_{0m,h}$ = 1 cm, α = 70%), T_{ds} = -15°C.
- Initially: mean Sodankylä winter T(z), 40% RH.
- +54h simulation from 00 local solar time (LT).
- First day: a general Arctic clear-sky inversion to about 300 m is formed, as in the Antarctica case.
- Then: Sunny days → shallow well-mixed layer
 Clear nights → shallow diurnal stable layer, T_s down to
 -25...-34°C depending on winds (V_g = 0/1/2/.. 10 m/s)



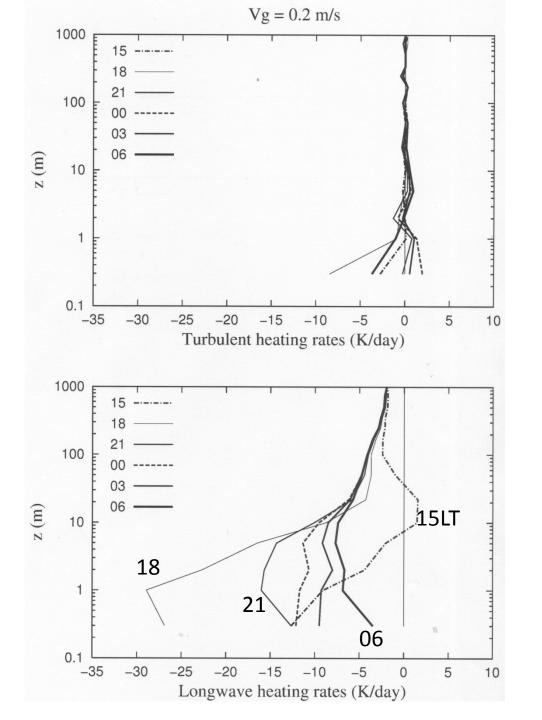
Day 2, clear sky, weak wind:

T2m, Ts: Unstable at 08-14 LT. T2m – Ts is about 2 K during the night

Surface heat fluxes: G: \sim const at night, H_o, LE_o small, <u>R_{net} dominates in G</u>

→ downwelling LW radiation should be rather accurate for a good G and a good T_s and T2m prediction.

Calm clear-sky night, day 2-3

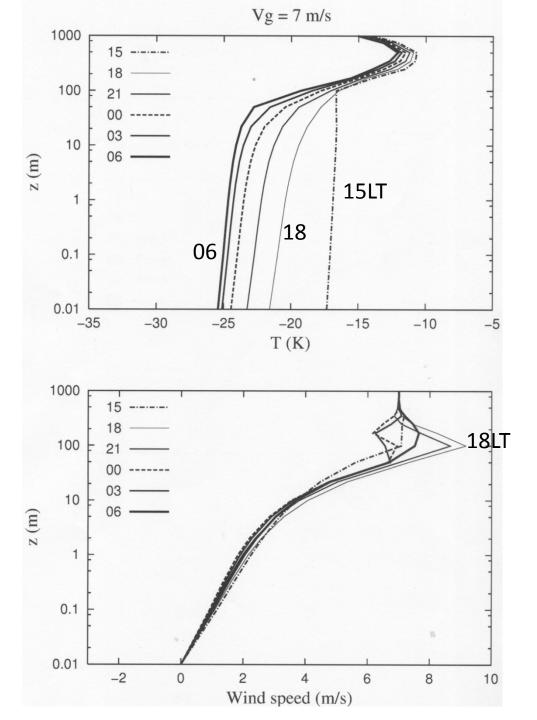

T(log z) 15LT \rightarrow 06LT: General inversion to 300 m

Mixed layer to 20 m at 15LT Then: Steep inversion Cold surface, quite logarithmic T(z) T2m –T_s ~ 6 K

Inversion in q(z), too

V(log z):

No wind, calm "radiative" night


Calm clear-sky night

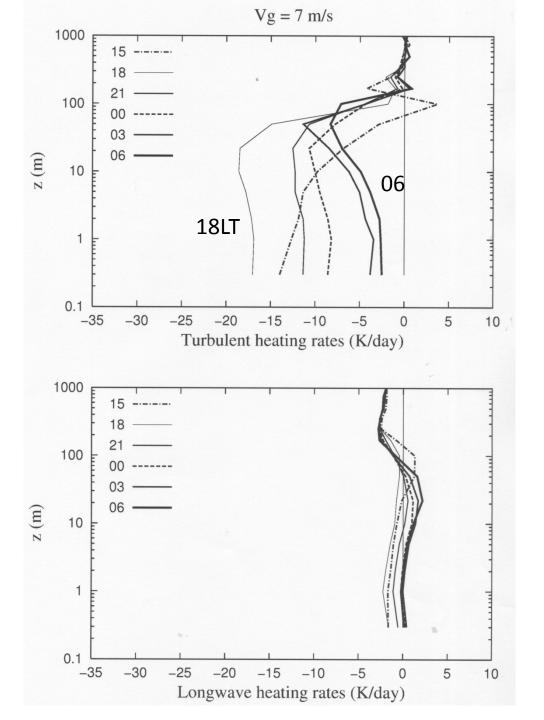
 $Q_{turb}(\log z)$ 15LT \rightarrow 06LT No wind, no turbulent cooling

Q_{rad} dominates:

In the evening: Strong LW cooling near the surface

During the night: Moderate LW cooling

Windy clear-sky night:

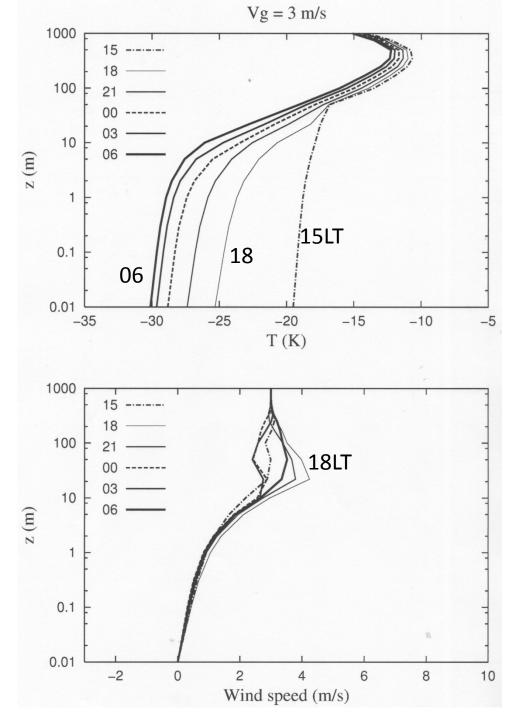

T(log z) 15LT \rightarrow 06LT: General inversion to 300 m

Well-mixed BL to 100 m at 15LT. Nearly isothermal surface layer during the windy night. T2m is closely coupled to T_s .

V(log z) 15LT \rightarrow 06LT:

Logarithmic surface layer, Strong wind shear

Inertial oscillation at 100 m NLJ at 18-21LT, Shears time-dependent in the Ekman layer



Windy clear-sky night:

Turbulent cooling dominates

(but is only moderate: wind shears are strong but T-gradients are weak)

LW cooling is insignificant in the windy surface layer (weak T, q -gradients)

Weak wind, clear sky night:

T(z) is well-mixed to 50 m at 15LT, is between isothermal and logarithmic during the night

T2m - T_s
$$\sim$$
 2 K

Wind speed: logarithmic to 5 m, inertial oscillation with weak NLJ at 20-50 m during the night

Weak wind clear-sky night:

Turbulent cooling is <u>moderate to</u> <u>strong in the surface layer</u>

(moderate shears, moderate Tgradients)

LW cooling is <u>moderate and</u> <u>dominates the mid-inversion and</u> <u>aloft</u>, but <u>turns to weak heating in the</u> <u>surface layer</u>

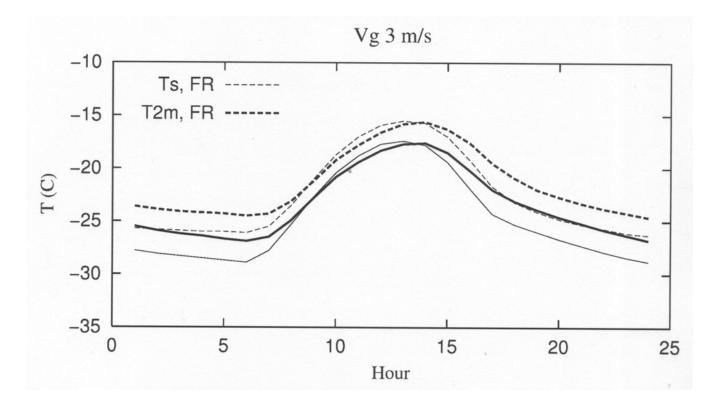
(compensates turb cooling!)

The day 2 0600LT V2m, V10m (ms⁻¹) and T_s, T2m, T10m, T100m (°C) as the function of V_g (ms⁻¹).

Vg	V2m	V10m	T _s	T2m	T10m	T100	T2m - T _s
						m	
0.0	0	0	-29.9	-23.4	-19.2	-11.6	6.5
1.0	0.9	1.4	-29.6	-25.2	-20.2	-11.7	4.4
2.0	1.1	2.3	-29.3	-26.5	-21.8	-11.9	2.8
3.0	1.2	2.8	-28.8	-26.8	-23.4	-12.2	2.0
4.0	1.4	2.9	-28.2	-26.6	-24.5	-12.6	1.6
5.0	1.7	3.2	-27.5	-26.0	-24.6	-13.0	1.5
6.0	1.9	3.4	-26.9	-25.6	-24.7	-13.9	1.3
7.0	2.2	3.7	-26.1	-24.8	-24.0	-15.7	1.3
8.0	2.6	4.1	-25.4	-24.1	-23.5	-17.3	1.3

Surprise in the experiments:

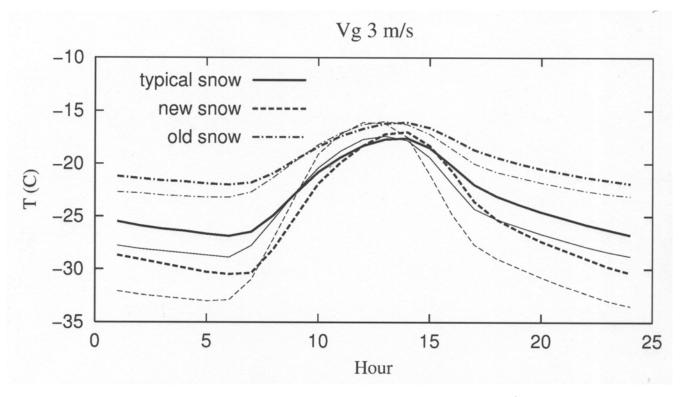
The snow surface was at its coldest after a calm night


But: T2m was at its coldest during weak wind, V2m of 1.2 m/s $(V_g 3 m/s)$, not during calms,

and T10m was at its coldest for V10m of 3.5 m/s (V_g 6 m/s) as was observed in SHEBA.

Why?

A little bit of wind helps to maximize $|H_0|$ (when using the <u>'short tails' f(Ri</u>), not with 'long tails'), so that the coldness of the surface is transported effectively to the air and Q_{turb} can stay strongly negative, against the positive Q_{rad} .


Sensitivity tests: Snow schemes:

A coarse snow scheme (here force-restore = FR) tends to produce too warm night-time temperatures (warm bias).

 \rightarrow Use multilayer snow schemes

Sensitivity tests: Snow types:

Use of older snow thermal properties (upper curves) when fresher snow actually prevails (lower curves) tends to produce warm bias at night

 \rightarrow Refresh your snow properties (primarily snow density) by the observed/predicted snowfalls.

Clear-sky nights over snow: conclusions

-**Calm night**: LW cooling dominates, leads to nearly logarithmic T(z).

-Windy night: Turb cooling dominates, V(z) is logarithmic with NLJ, surface layer is ~ isothermal.
-Weak wind: Turb cooling dominates in the SL against LW warming, LW cooling dominates aloft.

T2m is at its coldest as $|H_0|$ is maximized.

 $(|E_0| \text{ is also maximized } \rightarrow \text{ danger of road icing!})$

-**Coarse snow scheme**: may lead to a warm bias -**Old snow parameters**: may lead to a warm bias -**Inaccurate DLR**: may lead to wrong T_s and T2m.