
Effect of Surface Temperature Heterogeneity 

on Turbulent Mixing in the SBL 

Dmitrii Mironov  

German Weather Service 

Offenbach am Main, Germany 

(dmitrii.mironov@dwd.de)  

Peter Sullivan 

National Center for Atmospheric Research 

 Boulder, CO, USA  

(pps@ucar.edu) 

Workshop on “Parameterization of SBL in Numerical Weather Prediction Models”, Helsinki, Finland, 3-5 December 2012 

Ekaterina Machulskaya   

German Weather Service 

Offenbach am Main, Germany 

(ekaterina.machulskaya@dwd.de)  



Workshop on “Parameterization of SBL in Numerical Weather Prediction Models”, Helsinki, Finland, 3-5 December 2012 

Outline  

 Motivation  

 LES of stably stratified PBL over temperature-

homogeneous vs. temperature-heterogeneous surfaces  

 Analysis of mean fields and second-order moment 

budgets   

 Enhanced mixing in horizontally-heterogeneous PBL – 

an explanation 

 Prospects for improving turbulence parameterisations  

 Conclusions and outlook  



Motivation  

• Mixing is typically underestimated  

• Models tend to quench turbulence in strongly stable 
stratification 

• Ad hoc tuning devices like “minimum diffusion 
coefficients”  do not help much (they are often 
detrimental for the NWP/climate model performance)  

Models of stably stratified PBL, incl. surface layer, do 

not account for many important features (e.g. gravity 

waves, meanders of cold air, radiation flux divergence, 

and horizontal heterogeneity of the underlying surface)  



Motivation (cont’d)  

• Although most turbulence models are based on 
truncated second-moment budget equations, no 
comprehensive account of second-moment budgets in 
stably stratified PBL (SBL), neither in horizontally-
homogeneous nor in horizontally-heterogeneous case 
(cf. Mason and Derbyshire 1990, Coleman et al. 1992, 
Andrén 1995, Kosović and Curry 2000, Saiki et al. 
2000, Jiménez and Cuxart 2005, Taylor and Sarkar 
2008)  
 

• Poor understanding of the role of horizontal 
heterogeneity in maintaining turbulent fluxes (hence no 
physically sound parameterisation)  



Large-Eddy Simulations  

Boundary-layer flows over temperature-homogeneous vs. 
temperature-heterogeneous surface  

• LES code: Moeng (1984), Moeng and Wyngaard (1998), Sullivan et al. (1994, 
1996), Sullivan and Patton (2008). 

• Domain: 400400400 m, 200200192 mesh points, 2 m mesh size.  

• Geostrophic wind: (8,0) ms-1, Coriolis parameter: 1.3910-4 s-1,  temperature 
gradient above the PBL: 10-2 Km-1.  

• Boundary conditions: doubly periodic in x and y horizontal directions, the 
Monin-Obukhov surface-layer similarity relations are applied point-by-point. 

• Initial temperature profile: mixed layer of depth 100 m and temperature 265 K,  
temperature increases linearly aloft at a rate 10-2 Km-1. 

• In homogeneous case, a constant surface cooling rate of -0.375 Khr-1 over 8 hrs. 
In heterogeneous case, the surface cooling rate varies sinusoidally in the 
streamwise direction leading to a surface temperature difference of 6 K between 
the warm and the cold stripes (cf. Stoll and Porté-Agel 2009). Following this 
initial 8 hr period, a constant surface cooling rate of -0.375 Khr-1 in both cases.  
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Analysis of LES Data    

• In order to obtain approximations to ensemble-mean 

quantities, the LES data are averaged over horizontal 

planes and the resulting profiles are then averaged over 

more than 8000 time steps (the number of samples varies 

between cases). The sampling time covers the last 1.75 

hours of simulations. 

 

• Mean fields, second-order and third-order moments  

• Budgets of TKE, of the temperature variance and of the 

temperature flux with due regard for SGS contributions 

(important in SBL even at high resolution)  

• Implications for SBL turbulence parameterisations  



Scalar Variance Budget Derived from LES Data   

Resolved-scale scalar variance    
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Scalar Variance Budget Derived from LES Data (cont’d) 

Adding the two budgets, we get the budget of total 

(resolved + SGS) scalar variance  

   

































222

22

2
2

1

2

1
2

fufuffufu
x

x

f
fufuff

dt

d

iiii

i

f
i

ii 

Resolved-scale  

contribution  

Cannot be estimated  

unless high-order SGS  
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in most LES studies  



Components of Mean Wind   

Blue – horizontally-homogeneous SBL,  

red – horizontally-heterogeneous SBL.  



Mean Potential Temperature   

Blue – homogeneous SBL,  

red – heterogeneous SBL.  

cf. Stoll and Porté-Agel 

(2009) 



TKE and Temperature Variance  

Blue – homogeneous SBL, red – heterogeneous SBL.  
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TKE Budget   

Left panel – homogeneous SBL, right panel – heterogeneous SBL.  

Red – shear production, blue – dissipation, black – buoyancy destruction, green – third-order transport,  

thin dotted black – tendency .  
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Left panel – homogeneous SBL, right panel – heterogeneous SBL.  

Red – mean-gradient, black – buoyancy, blue – pressure gradient-temperature covariance, green – 

third-order transport, thin dotted black – tendency .  

Vertical Temperature Flux Budget 
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Temperature Variance Budget 

Left panel – homogeneous SBL, right panel – heterogeneous SBL.  

Red – mean-gradient production/destruction, blue – dissipation, green – third-order transport, 

black (thin dotted) – tendency .  
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Key Point: Third-Order Transport  

of Temperature Variance  

LES estimate of <w’’2> (resolved plus SGS)  
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In heterogeneous SBL,  

the third-order transport  

of temperature variance is  

non-zero at the surface  

Surface temperature variations 

modulate local static stability and 

hence the surface heat flux   net 

production/destruction of <’2> 

due to divergence of third-order 

transport term!  
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Vertical Temperature Flux: Algebraic Closure  
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Enhanced Mixing in Horizontally-Heterogeneous SBL  An 

Explanation   

increased <’2> near the surface  reduced 

magnitude of downward heat flux  less work against 

the gravity  increased TKE  stronger mixing  

Increased  

Increased  Decreased  
(in magnitude) 



Good News  

• Analysis of LES results suggests plausible 

explanation of enhanced mixing in horizontally-

heterogeneous SBL – we understand more 

(increased <’2> near the surface is a key point)  

 

Bad News  

• Major increase of <’2> in heterogeneous SBL 

occurs near the surface – difficult to parameterise  

Implications 



In order to describe enhanced mixing in heterogeneous SBL,  

an increased <’2> at the surface should be accounted for.  

 

• Elegant way: modify the surface-layer flux-profile 

relationships. Difficult – not for nothing are the Monin-

Obukhov surface-layer similarity relations used for more 

than 50 years without any noticeable modification!  

• Less elegant way: use a tile approach, where several parts 

with different surface temperatures are considered within an 

atmospheric model grid box.  

Can We Improve SBL Parameterisations? 



Tiled TKE-Scalar (Temperature) Variance  

Closure Scheme  

• Transport (prognostic) equations for TKE and for the temperature 

variances including third-order transport   

• Algebraic (diagnostic) formulations for temperature flux, for the 

Reynolds-stress components, and for turbulence length scale  

• Tile approach where different tiles have different surface 

temperature  

• Surface fluxes are computed as weighted means of fluxes over 

individual tiles  

• <w’’2> is non-zero at the surface in heterogeneous SBL   

• Input parameters of numerical experiments are similar to LES 

(except for piece-wise vs. sinusoidally varying surface 

temperature)  
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Tiled TKE-Scalar Variance Scheme: Results   

Blue – homogeneous SBL,  

red – heterogeneous SBL.  



SBL in DWD Models: Work in Progress  

• Implementation of tile approach (Ekaterina Machulskaya, Jürgen Helmert)  

(i) only a few tiles are considered but the tiles with the maximum difference in 

terms of their thermal inertia must be included,  

(ii) individual profiles of soil/inland water temperature (and soil water content) 

are considered for each tile,   

(iii) SGS inland water is crucial (treated with FLake, http://lakemodel.net) 

• Further development of parameterization of “circulation terms” (Matthias 

Raschendorfer)  

• Development of the TKE-Scalar Variance scheme, incl.  prognostic 

treatment and third-order transport of scalar variances, and coupling with 

tiled surface scheme (COSMO, ICON)  

• Development of an extended statistical SGS cloud scheme to account for the 

skewness of scalars (DWD, MPI-M, University of Hannover) 



• LES results suggests plausible explanation of enhanced mixing 

in horizontally-heterogeneous SBL   

• Turbulent transport of temperature variances (third-order term 

<w’’2> in the <’2> budget) is an important point  

• Ways to improve SBL parameterisations are outlined   

   

 

• Simulations of strongly stable PBL (PS & DM)  

• Comprehensive analysis of pressure-scalar and pressure-velocity 

covariances in the second-moment budgets (DM & PS) 

• Development of improved SBL parameterisations, e.g. tile 

approach, treatment of scalar variances (DWD, NCAR, etc.) 

Conclusions and Outlook 
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Appendix 



w at 12.5 m above the surface 
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s x 

Surface Temperature (cont’d) 

The number of stripes does not 

affect the results, what matters 

is the temperature difference 

between warm and cold stripes   

(Stoll and Porté-Agel 2009) 

K 3

K 6



Estimation of Total Variances  

,ffff 

There is nothing really new in it, cf.  

• Mean flow-wave-turbulence decomposition (Hussein and Reynolds 1970, 1972, 

Reynolds and Hussein 1972) 

• A procedure used in LES studies to compute (approximations to) ensemble-mean 

statistical moments as a sum of resolved scale and sub-grid scale contributions (e.g. 

Brown 1995, Mironov et al. 2000, Mironov 2001)   

• Energy budget scale-by-scale (Frisch 1995, section 2.4) 

We apply a triple decomposition, using (i) a low-pass filter whose characteristic horizontal scale, , is 

much less than the domain size, L, and (ii) a horizontal averaging operator over L. A fluctuating quantity 

f may then be represented as a sum of the horizontal mean filtered part, a deviation of the filtered 

quantity from the horizontal mean, and a sub-filter fluctuation,   

where an overbar denotes a low-pass filtered quantity, and a prime denotes a deviation therefrom. 

Angle brackets denote averaging over the horizontal, and a double prime denotes a fluctuation about a 

horizontal mean.  



A triple decomposition is applied, using (i) a low-pass filter (overbar) whose 

characteristic horizontal scale  is much less than the domain size L, and (ii) a 

horizontal averaging operator over L (angle brackets).  

A fluctuating quantity f may then be represented as a sum of the horizontal mean 

filtered part, a deviation of the filtered quantity from the horizontal mean 

(double prime), and a sub-filter fluctuation (prime):   

Then 
 

L 

Estimation of Total Variances  
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Estimation of Total Variances (cont’d) 

Low-pass filtered and high-pass filtered quantity    
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Velocity Variances   

Blue – homogeneous SBL, red – heterogeneous SBL.  

Short-dashed – <w’2> , long-dashed – <v’2>, solid – <u’2>.  



Components of Momentum Flux   

Blue – horizontally-homogeneous SBL,  

red – horizontally-heterogeneous SBL.  



Streamwise and Spanwise Temperature Flux   

Blue – homogeneous SBL, red – heterogeneous SBL.  



Left panel – homogeneous SBL, right panel – heterogeneous SBL.  

Red – mean temperature gradient, brown – mean velocity shear, blue – pressure gradient-temperature 

covariance, green – third-order transport, thin dotted black – tendency.  
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Streamwise Temperature Flux Budget 



Left panel – homogeneous SBL, right panel – heterogeneous SBL.  

Red – mean temperature gradient, brown – mean velocity shear, blue – pressure gradient-temperature 

covariance, green – third-order transport, thin dotted black – tendency.  

y

p
vw

zz

v
w

z
wv

t

v




























Spanwise Temperature Flux Budget 



Vertical Temperature Flux Budget 
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Low boundary condition for <’2> 
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Tiled TKE-Temperature Variance Closure Model (cont’d) 

Temperature (heat) flux, momentum flux, turbulence time (length) scale  

 



































pwuw

z
wg

z

v
vw

z

u
uw

t

e
i

2

2

1

TKE 




















 2
2

2

1

2

1
w

zz
w

t

Temperature variance     

,...),,,(,

,,,)1(

2/1

2

Nehzllle
z

v
eCwv

z

u
eCwugC

z
eCw mmbh


























... 



Motivation  

• Mixing is typically underestimated  

• Models tend to quench turbulence in strongly stable 
stratification 

• Ad hoc tuning devices like “minimum diffusion 
coefficients”  do not help much (they are often 
detrimental for the NWP/climate model performance)  

Models of stably stratified PBL, incl. surface layer, do 

not account for many important features (e.g. gravity 

waves, meanders of cold air, radiation flux divergence, 

and horizontal heterogeneity of the underlying surface)  

Kasimir Malevich, Black Square, 1915 

(as a conceptual model of nocturnal SBL) 



Ensemble-Mean Second-Moment Budget Equations  

Temperature (heat) flux    
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