Forecasting low level clouds and fog with Arome

F. Bouyssel - T. Bergot - C. Lac - C. Piriou - Y. Seity

Workshop on Parameterization of Stable Boundary Layer in Numerical Weather Prediction Models Finnish Meteorological Institute, Helsinki, December 3 - 5, 2012

Outline

\checkmark Introduction

- Fog diagnostic based on Arome
- Recent modifications and vertical resolution
- Cloud droplet concentration
- ✓ Perspectives

AROME-France

- ✓ Limited area spectral non-hydrostatic convective scale model
- ✓ Operational since December 2008
- ✓ Resolutions : Dx=2.5km , 60 vertical levels, Dt=60s
- \checkmark 3D-Var with a 3h assimilation window
- \checkmark Hourly coupling to global Arpege model
- ✓ 4 daily 30h forecasts at 0,6,12,18h UTC

Computational domain (750×720×60)

Observer & comprendre

RADARSAIRCRAFTSSYNOP/RADOMEIASISEVIRITEMPGround GPS

Monthly evolution of observations number

AROME physical parameterizations

	Atmospheric physics		Surface physics	
Vertical diffusion	1.5 closure scheme with prognostic TKE (Cuxart et al., 2000) modified according (Cheng et al., 2002)	Orography Physiography	GTOP030 and HWSD 30 arc-second, ECOCLIMAP 1km (Masson et al., 03)	
Mixing	Non local mixing length (Bougeault and Lacarrere, 1989)	Surface type	Land, Town, Sea, Inland water	
length		Soil and	ISBA 3L: Force restore scheme. Prognostic temperature, liquid and solid water (Noilhan and Planton, 89)	
Shallow	Dry and moist shallow convection. Surface flux closure. (Pergaud et al. 09)	vegetation		
"Resolved" Clouds	Statistical scheme with possibly mixed symmetric (Gaussian) and asymmetric (Exponential) functions. (Bougeault, 82)	Snow	1 layer : prognostic SWE, albedo, density	
			(Douville, 95).	
		Open water	ECUME:bulk iterative parameterization	
Microphysics	1 moment bulk scheme with prognostic var. for cloud droplets, rain, ice crystals, snow and graupel (Pinty & Jabouille, 98)		(Belamari and Pirani, 07)	
		Inland water	Charnock's formulation	
Deep Convection	None	Town	TEB: Urban canyon concept (Masson, 00)	
GWD	None			
Radiation	ECMWF codes : LW=RRTM (Mlawer, 97) SW=old IFS scheme (Fouquart, Morcrette)	SBL	Extra layers between lowest model level and surface. 1D prognostic turbulence scheme. (Masson, 08)	

Example of nice low level cloud forecast

25/11/2011 at 9h UTC

MSG

avance

Arome low cloudiness forecasted at 9h

Arome relative humidity forecasted at 9h

Fog

 \Rightarrow No bias for the fog formation

 \Rightarrow Tends to dissipates fogs too early

Fog diagnostic with Arome

Arome data used :

- (Wind)_10m
- HU=mean(2m, 20m, 50m)
- (Q_liq)_20m → Kunkel (JAM, 1984) → <u>horizontal visibility</u> Reference : internal report « Besson, Lafaysse, Morillo, 2007 »

METEO FRANCE

2) Fog diagnostic with Arome

Fog diagnostic with Arome

METEO FRANCE Toujours un temps d'avance

2) Fog diagnostic with Arome

Fog diagnostic with Arome

29 December 2010 at 6 UTC

2) Fog diagnostic with Arome

Fog diagnostic with Arome

Comparaison with COBEL on Roissy

COBEL (Bergot et al., 2005) : 1D operational model for FOG forecast on airports.

<u>Characteristics</u>: - Very high vertical resolution (1st level : 25cm)

- Local assimilation scheme
- Physics adapted to fogs (but warm 1-moment microphysics)

✓ Comparison between 3h and 8h forecast

3) Recent modifications and sensitivity to vertical resolution

Modification for subgrid clouds

• AROME statistical cloud scheme uses $Q = \frac{q_t - q_{sat}}{\sigma_s}$ (=normalized distance to saturation)

In the previous version, σ_s comes from turbulence, but in stable situation, this term is too weak and AROME did produce clouds only for HU \ge 100%

Following Wim de Roy ideas, we add σ_{RH_c} and $\sigma_s = \sqrt{\sigma_{turb}^2 + \sigma_{RH_c}^2} \left(\begin{array}{c} \alpha = 0.02 \\ \sigma_{RH_c} = \alpha \times q_{sat} \end{array} \right)$

Toujours un temps d'avance

Vertical resolution

Preparation of future Arome-France configuration: (2.5km, L60) -> (1.3km, L90)

Test several vertical resolution over Paris Charles de Gaulle airport using ParisFog observation campaign. Arome domain created at 1.3km, 480x480 gp, 45s

	POI	16 November 2010	19 November 2010	30 November 2010
	START	04UTC	04UTC30	01UTC
Ì	END	07UTC	09UTC	05UTC30
	DURATION	3h	4h30	4h30
	LWC max (g/m^3)	0.29	0.141	0.212
INSU	LWC medium (g/m^3)	0.036	0.038	0.039

Observer & comprendre

3) Recent modifications and sensitivity to vertical resolution

Vertical resolution

Vertical resolution near the surface

<u>Arome forecasts over Roissy from</u> <u>operational analysis 20101115r18</u>

Comparison COBEL and MESO-NH/AROME 1D

Evaluation of AROME/Méso-NH 1D on radiative fogs on CDG airport for 2 winters :

Same vertical resolution (COBEL grid), same surface scheme (7 vertical levels)

Comparison COBEL and MESO-NH/AROME 1D

4) Sensitivity to cloud droplet concentration

Sensitivity to cloud droplet concentration

With ICE3, droplet concentration (N_c) fixed : $N_c = 300 \text{ cm}^{-3}$ on land, $N_c = 100 \text{ cm}^{-3}$ on sea Interest to introduce a N_c variability, conserving a 1-moment scheme (ICE3) ? N_c modifies droplet sedimentation and the SW radiative properties

Fog onset and dissipation times are not significantly modified, only the thickness of the cloud (impact on T2M)

 \rightarrow How to initialize Nc (PM of MACC analysis)?

Observer & comprendre

4) Sensitivity to cloud droplet concentration

Simulation of polluted/non polluted areas with ICE3

Fog case studies of variation of Nc in microphysics and radiation

ICE3 Ref (Nc=300 cm-3)

Observer & comprendre

Impact of a more sophisticated 2-moments microphysics scheme is reduced.

-> Perspective : use an aerosol analysis to initialise Nc ?

Perspectives

- ✓ R&D on forecasting fog with Arome will continue with high priority
- Preparation of future Arome configurations: 1.3km for Arome-France and 500m for smaller domain (vertical resolution, etc.)
- ✓ Investigate ways to have a finer vertical resolution in the physics, in priority near the ground in a similar way than CANOPY
- Try to improve initialization of cloud droplet concentration with real time informations (MACC, MOCAGE, ??)
- ✓ Research studies: 2-moments microphysical scheme, aerosols, LES with MESO-NH of radiation fog for process study (Dx~1m, Dz~1m)

Thank you

your attention