

Assimilation Of AMSU-B Radiances In HIRVDA

Per Dahlgren SMHI

Outline

Info on the instrument

Quality control

Bias-correction

Experiment period

Results

General Info On Microwaves

- Microwave spectrum: large 'window' regions
- Two strong absorption bands: 57GHz (oxygen) and 183 GHz (water vapour)
- Microwave instruments:
 - works day and night
 - almost unsensitive to clouds
 - precipitation and thin ice cirrus cause scattering
 - have course resolutions compared to IR instruments

General Info On AMSU-B

- A microwave sounder with 5 channels:
 - 2 window channels
 - 3 sounding channels at 183 GHz
- Satellites: NOAA 15,16,17 AQUA (NASA) METOP (European satellite) NOAA18, renamed to MHS
- Data from NOAA available via EARS

AMSU-B response functions for two cases

Signatur

Quality Control: Scattering

- Why do we need quality control?
- y: observations
- H: observation operator, may not model scattering accurately
- x_b: HIRLAM profile. Inaccurate representation

of fields that cause scattering (rain, ice-particles etc)

- Several indexes available to spot 'contaminated' radiances
- Most of them use the window channels
- Some requires data from AMSU-A to be mapped onto the AMSU-B grid: difficult to implement inside HIRVDA
- The difference between AMSU-B Ch1 and Ch2 (89 and 150 GHz) can be used as a crude index over sea

Quality Control: Scattering

NOAA17 3/5-2006 11:52UTC

AVHRR RGB image Ch 1,3,4

AMSU-B Ch1-Ch2

AMSU-B Ch1-Ch2 >-15K

05/16/06

Pictures from Adam Dybbroe, SMHI

Bias Correction

- A large sample of obs minus first guess statistics show a bias
- The biases (we want to correct) originate from
 - y: the observations. This is characterized by scan-dependency.
 - -H: the observation operator (RTTOV)
- A simple linear regression model is used to correct the biases originating from y and H
- The predictors used for AMSU-B are:
 - mean temperature 1000-300hPa
 - mean temperature 200-50hPa
 - the scan-angle

Signatu

05/16/06

- the square of the scan-angle

 \rightarrow (**y**-**Hx**_b)

$$\star corr = p_0 + \sum_{j=1}^N c_j P_j$$

The correction model

- p₀: constant
- c : coefficients calculated from a reference data-set
- P : predictors

Observation Errors

	Approximated Background error BGOS	Observation error	Weight given in analysis σ _b /σ _o
Ch 3	3.5K	2K	1.75
Ch 4	2K	2K	1.0
Ch 5	1.5K	2K	0.75

Experiment Setup

- 33km horizontal resolution
- 40 vertical levels
- hirlam version 6.3.5
 - Kain-Fritsch
 - Rasch-Kristjanssen
 - CBR
 - ISBA
- HIRVDA version 6.2.1
- FGAT

05/16/06

- 6h assimilation cycle
- +48h forecasts each cycle
- Period: January 2005
- **REF:** Conventional observations
 - + AMSU-A
- EXP: REF+AMSU-B Ch 3,4,5 over sea

Model domain

Windstorm Erwin (Gudrun) Jan 8 2005

Signatur

05/16/06

Performance of the Bias-Correction

Bias-correction coefficients were determined from a data-set of 1 month: December 2004 Data sample from January 2005

y-axis: number of samples Blue: overlayed gaussian curve Red: data distribution

Signatur

05/16/06

Results Compared To Radiosondes: EWGLAM List

- A humidity increment may change the humidity and the wind-field
- Some of the initial changes in the humidity field are likely overrun by the model dynamics
- The initial humidity changes may however spread to other variables (clouds, radiation etc) which in turn effects the mass-field

Results Compared To Synops: EWGLAM List

Signatur

Signatur

05/16/06

The cloud and precipitation patterns have changed

Difference in: Total 6h precipitation for +18h forecasts **Total difference: 0.0038 mm**

Timescore

• Minor differences in RMS of mslp

x-axis show the valid time of forecasts

Signatur

Summary

- AMSU-B has been assimilated over sea
- The Bias-correction uses only air-mass predictors + the scan correction
- A simple index is used for quality control over sea
- Results were positive for January 2005