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Introduction
A method for finding numerical solution of non-hydrostatic 
linear equations of atmospheric dynamics is introduced. 

The general solution includes the stationary solution with 
optional initial conditions. 

Horizontally homogeneous, but otherwise arbitrary reference 
state and arbitrary orography is implemented.

Generally, homogeneous temperature and wind profiles in vertical 
are used in linear models. 
This is a restricting factor in investigation of NWP models, because 
the distribution of fields of real atmosphere is actually not constant. 

The proposed method of ´exact´ numerical solution of linear model 
makes more complex atmospheric stratifications accessible. 



  

Model description
Initial continuous equations: Linear, non-hydrostatic pressure-coordinate 
equations with filtered internal sound waves (Miller-Pearce-White model).
When using the nondimensional log-pressure coordinate

Dynamic fields are the omega-velocity ω = Dp / Dt, temperature fluctuation T, 
geopotential fluctuation φ, and horizontal velocity fluctuation v. Background state of the 
atmosphere is presented by stationary, horizontally homogeneous wind vector U, 
background temperature   , gas constant of dry air R, and Coriolis parameter f.

the linearised version of this model is following:

T



  

Discretization and spectral presentation
For solution:

✔ Miller-Pearce-White model equations are spatially (Arakawa C-grid) and 
temporally discretised. 3D staggering with constant horizontal grid-step Δx = Δy 
and variable vertical step Δp.
✔ Two time level, semi-implicit, semi-Lagrangian time scheme. 

✔ The discrete equations are embedded into three-dimensional (x, y, t) discrete  
Fourier space:



  

✔ Spectral presentations for averaging and difference operators on staggered 
grids are formulated, arriving finally at the discrete orthogonal mode equations 
for wind, temperature and nonhydrostatic geopotential fluctuations:

✔ The discrete spectral wave equation for omega velocity is derived: 

✔ Boundary conditions are: free-slip condition on the surface and radiative 
boundary condition on the top.

.



  

✔ The algorithm for stationary solution computation is based on calculation of 
the decrease factors of the omega-velocity spectral amplitudes from a recurrence 
formula, with initialization from the radiative boundary condition on the top. 
Solution is looked for in the form: 

 
Subtitution into wave equation yields a two-point recurrence for c

k 
:

The modulus of a complex decrease factor c
j
 presents the actual decrease of 

the wave amplitude per single layer of discrete model, whereas its argument is 
the phase angle increment in this layer:

.

.

.



  

The developed model is 4D-discrete (x,y,z,t), spectral, semi-
implicit, semi-Lagrangian (SISL) scheme for stationary case.

where the bottom value ω
1/2  

is specified from bottom boundary condition.

After the initial value on the top is specified, and all c
k
 are evaluated, solution of 

wave equation is designed as a cumulative product of decrease factors:

Recurrence is started from the top because recurrence is stable for moving from 
top to bottom, in direction of decreasing k and increasing ω. 



  

Solution examples

where  h
0 
is the maximum height; x

0 
, y

0
 – center location and a

x
, a

y
 – half-width of the 

hill.

✔ In the following simulations, the non-varied constants in vertical cross-sections are:

Δx = 500 m, Δz = 200 m, N
z
 = 155, h

0
 = 100 m, 

a
x
 = 2 km, a

y
 → ∞, x

0
 = 50 km, Δw = 0,1 m/s.

✔ The reference temperature T(z) and velocity U(z) profiles are shown in each 
particular case.

✔ The following examples present three-dimensional flow regimes over a model 
orography.

The modelled field is the log-pressure 
vertical velocity close coinciding with the 
ordinary vertical velocity dz / dt:

h x , y=
h0

1x−x0
2/ax

2 y− y0
2/ ay

2 ,

.



  

1. Stationary orographic waves in homogeneous 
atmosphere conditions. Vertical cross-section.

Waves of vertical velocity for 

constant wind U = 12 m/s and temperature T = 280 K. 

Mid-latitude case: f = 10 - 4 s - 1. a
x
 = 2 km, h

0
 = 100 m,  Δw = 0,1 m/s. 

Green – positive velocity, red – negative velocity.



  

2. Stationary orographic waves in homogeneous 
atmosphere conditions. Horizontal cross-section.

surface z = 0.5 km z = 1 km

Constant wind U = 12 m/s and temperature T = 280 K, Δx = Δy = 500 m, 
Δz = 25 m, N

z
 = 300, a

x
 = a

y
 = 2 km, Δw = 0,05 m/s.

z = 4 kmz = 2 km z = 6 km



  

3. Stationary orographic waves in non-homogeneous 
atmosphere conditions. Refraction and reflection on 
tropopause.



  

4. Stationary orographic waves in non-homogeneous 
atmosphere conditions. Refraction and reflection on 
tropopause in the case of linear wind shear in the 
troposphere.



  

5. Stationary orographic waves in non-homogeneous 
atmosphere conditions. Refraction and reflection on 
tropopause in the case of  hyperbolic wind shear.



  

Summary

The derived solution can be used to study the stratification 
effects on orographic flow pattern. 

✔ Numerical algorithm is computationally effective and extremely fast.
✔ High horizontal and vertical resolution.
✔ Sophisticated wind and temperature profiles can be used.

As a test-bed, the solution can be used for testing of adiabatic 
cores of limited area NWP models.

✔ Investigation of the impact of spatial and temporal discretization.
✔ Investigation of the time step size impact on the numerical stability. 

The approach is also suited for analytical investigation of 
different numerical effects on solution accuracy.

✔Spectral smoothing



  

Remaining problems

Some instability may occur in computation cycle when reference 
wind is approaching to zero – such vertical layers are called 
critical. To overcome this complicated situation, a computation in 
fine vertical resolution is needed (sometimes even 1m vertical 
resolution is required). 
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