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Problematics of Turbulence
Parameterization

e NWP models involve eddy viscosity K, and eddy
diffusivityand K, that account for unresolved turbulent
mixing and diffusion.

e The most sophisticated turbulent closure models used
today for NWP belong to the family of Reynolds stress
models.

e These models are formulated for the physical space
variables; they consider a hierarchy of turbulent
correlations and employ a rational way of its truncation.

In the process, unknown correlation are related to the
known ones via “closure assumptions” that are based upon
preservation of tensorial properties and the principle of
Invariant modelling according to which the constants in
the closure relationships are universal

However, the physics is different on different scales



Complicating factors for turbulence modeling

Geophysical flows are often strongly anisotropic and
Include various waves

s Gravity force => stratification, gravity waves

= Larger scales: Coriolis force due to planetary rotation =
guasi-2D flows, inertial waves

= Largest planetary scales: Variation of Coriolis force with
latitude => B-effect, Rossby waves, flow zonation

Reynolds averaging does not differentiate between
scales;

Reynolds stress models employ the concept of “invariant
modeling” (constants in closure assumptions are
assumed invariant and are calibrated in simple flows)

Spectral approach naturally accounts for effects on
different scales



The Quasi-Normal Scale Elimination
(QNSE) theory of turbulence

s QNSE is a spectral quasi-normal theory
s Utilizes the N-S and temperature equations
s The algorithm — successive elimination (by ensemble

averaging) of small shells of modes of the near-
dissipation range and calculation of the corresponding
corrections to the viscosity and diffusivity

Partial scale elimination yields SGS parameterization for
LES; full scale elimination provides eddy viscosities and
eddy diffusivities for RANS models

The QONSE theory works for neutral, stable (including
strong stratification) and moderately unstable BLs
without any adjustable parameters

OQONSE is an alternative to the Reynolds stress method in
obtaining eddy viscosities and eddy diffusivities



Stable stratification. Basics of the theory

The theory is developed for a fully three-dimensional turbulent flow field with
imposed vertical temperature gradient. The flow is governed by the
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and continuity VU=0  equations in Boussinesq approximation.

Central problem is treatment of nonlinearity. Perturbative solution

based on expansion parameter Re? It is strongly divergent!

Spectral approach is most appropriate for dealing with this problem.

The general idea: Re is small for smallest scales of motion ==

= Derive perturbative solution for these small scales

= Using this solution and assumption of Quasi-Gaussianity perform
averaging over infinitesimal band of small scales. Compute corrections
to “effective” or “eddy” viscosity and heat diffusivity. Viscosity increases;
Re for the next band remains small

» Repeat the above procedure for next band of smallest scales.
= Final result: coupled system of 4 differential equations for all corrections. Scale-
dependent horizontal and vertical eddy viscosities and diffusivities are obtained.




Fourier-transformed velocity and temperature equations

Using continuity equation eliminate pressure from the momentum equation.
Write the momentum equation in a self-contained form using formal solution to
the temperature equation:
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Velocity Green function acquires tensorial structure
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is the auxiliary Green function, v,, and v, are the horizontal and the vertical
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Advantages of the QNSE over
Reynolds stress models

QNSE explicitly accounts for the processes on the eliminated
scales

The effect of IGW is included; the dispersion relation for IW in
the presence of turbulence is derived, and the threshold of IW
generation is obtained

QNSE accounts for modifications of the spectral
characteristics; for instance, it captures the transition from
the Kolmogorov -5/3 to the steeper, N2k, 3, vertical spectrum
of the horizontal velocity

QNSE accounts for the flow anisotropization and so it yields
vertical and horizontal eddy viscosities and eddy diffusivities

These turbulent exchange coefficients are given as analytical
functions of the moving dissipation cutoff for LES or of Ri (or
Fr) for RANS and are easy to implement in mesoscale or
global models

QNSE provides a realistic prediction of the dependency of Pr,
on Ri



RANS modeling
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Comparison with data: Pr,

as

a function of

Ri
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Unstable stratification (Convection)
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Validation of the QNSE-based RANS
models in a single-column formulation

K-g format

s BASE (GABLS 1)

s SHEBA

s CASES-99 (particularly, IOP-9 event)
s CASES-99 (GABLS 2)

K-€ format

a CASES-99 (GABLS 2)
a2 HIRLAM 7.0 — simulations of January and
March, 2005



QNSE-based K-¢ model

Vertical eddy viscosity and eddy diffusivity are given as
Ku=C,onK?/e, Ky=C oy, K4/¢

2= lkul@f @l aK, 2o g2k 2

C, Is a linear function of Ro.=u./|f|L and Fr.=u./NL which
account for the effects of rotation and stratification

Stability functions a,, and a,, are given by the QNSE theory

More detalls are In

Sukoriansky, S., B. Galperin, and V. Perov, Application of a
new spectral theory of stably stratified turbulence to

atmospheric boundary layers over sea ice. Bounaary-Layer
Meteorology, 117, 231-257, 2005.
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Comparison with CASES-99 — Velocity profiles
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Cornparison with CASES-99 — Temperature profiles
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QNSE-based K-l model
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Comparison with CASES-99 — diurnal cycle

The simulation covered a 60-hour period of the CASES-99 experiment, from 14 00 (local
time, LT) 22 October 1999 through 02 00 LT 24 October 1999. During the day, the
surface temperature was higher than the air temperature hence unstable stratification,;
the following night was characterized by stable stratification. The diurnal cycle starting
on 14 00 LT 23 October and extending for 24 hours was designated by the GABLS
community for the model inter-comparison experiment GABLS-2.
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GABLS 2 — Potential temperature
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GABLS 2 — Potential temperature

Comparison of the QNSE-based K-8 and K-g models
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Surface friction velocity (m/s)

CASES-99: 60-hr simulation for GABLS2

T T T T T T T 300 T T T T T T T T T T T
5 - TSER USTAR_GABLS2 obs - TSER SENF_GABLS2_obs -
i) S .. TSER_USTAR_GABLS2_K_model -  TSER_SENF_GABLS2_K4_model

H

08 F

200
07 F

15[:] i : : q
100 o] \

; N
2 S S e e

06
0.5

0.4

e T

| N S A S

Surface senscible heat flux (W/m*"2)

P
01 ot

B0 E

0 I 1 | 1 | 1 1 1 I 1 I 100 I 1 I I I 1 l I I 1 I

0 5 10 1% 20 25 30 35 40 45 50 55 60 0 5 10 15 20 25 30 35 40 45 50 &5
Time (h) Time (h)

Friction velocity Surface sensible heat flux



he time series of the temperature at 2m
height for GABLS?2
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Testing of the QNSE-based K-l model in the

numerical weather prediction system HIRLAM

NWP system HIRLAM (version 7.0): High Resolution Limited Area Model
Covers the North-East Atlantic, Europe, and Greenland
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Hydrostatic model; 438x336 points; 22km x 22km resolution with 40 vertical levels
Lateral boundary conditions and the first guess field are from ECMWF operations
Massive data assimilation: over 1000 stations all over Europe

Data assimilation cycle is 6 hours

From each 00, 06, 12, 18 UTC, a +48 hours forecast is run

Total: 120, +48 h forecasts in one month

January and March 2005 were chosen as cold months

Region of interest: Scandinavia



The reference and QNSE-based K-2
models in HIRLAM
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Problems with the reference model

Positive bias in the wind direction, accompanied by too strong
near-surface winds

Too fast a deepening and too slow filling of cyclones, making
HIRLAM too active towards the end of the forecast period

=Modus Operandi: replace Ky, and K, by the QNSE-derived
stability functions; run twin experlment analyze the difference
(reference - new)/reference



January, 2005

Verification against observations EXP: NST/Jan - REF/Jan
Time: 2005310100 - 2065013118 Domain: Scn Forecast from 00 06 12 18

Verification against observations EXP: NST/Jan - REF/Jan
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Verification against observations EXP: NSF/March - REF/March
Time: 2005030100 - 2005033118 Domain: Scn Forecast from 0006 12 18
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Conclusions

Derivation of the QNSE model of turbulence is maximally proximate
to first principles

Theory explicitly resolves horizontal-vertical anisotropy
Accounts for the combined effect of turbulence and waves
Predicts correct behavior of Pr; as a function of Ri
Anticipates the absence of the critical Ri

Yields modification of the classical dispersion relation for internal
waves that accounts for turbulence

Provides subgridscale closures for both LES and RANS

The QNSE theory has been implemented in K-€ and K-{ models of
stratified ABL

Good agreement with CASES-99 data sets has been found for cases
selected for the GABLS 2 experiment

In the case of unstable stratification, a counter-gradient
modification Is necessary for realistic prediction of temperature

The new stability functions improve predictive skills of HIRLAM in
+24h and +48h weather forecasts

QONSE-based models are a viable alternative to Reynolds stress
models
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