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e Introduction - why do we want to use radar
data in NWP

« Radar observations, their usage and related
problems

Wind
Reflectivity
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Introduction

« Radar data have potential for improving
NWP model forecasts:

In few years operational NWP models will be
run with resolutions of order 1-5 km.

Such high resolution models require high
resolution wind and moisture data for
Initialisation.

DA techniques have developed and are now
capable to extract information from

observations only indirectly related to
prognostic variables.
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Radar measurement

 Doppler radar emits
electromagnetic waves
to investigate
T atmospheric properties.
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\\\\\\\\\\\\\\ N radar radial wind.
e All radar measurements
are volume integrals of
atmospheric properties
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Error sources

Weather Radar Data Quality in Europe
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Spatial distribution of observations

Sounding observations
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Spatial distribution of observations

Radar network:
spatial resolution: ~1km
time resolution: 5 -15 min
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Radar observations

 Radar radial wind component
VAD, VVP, superobservations
 Radar reflectivity
precipitation
 Refractivity

Information about atmospheric moisture (+
temperature and pressure)
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Radar radial wind

 The radial velocity is determined from
observed phase difference between
successive radar pulses.

« Ambiguity problem:
1. Maximum unambiguous velocity..... vu=prr>
2. Relation to maximum 47\
unambiguous range rnvn=cyg
3. True velocity Virue=Vm+2 nVn
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Radar radial wind

e Two methods to make use of radar radial
winds:

a) Define u- and v- components of the wind.
Simplifying assumptions of the wind field must
be made.

b) Use an assimilation method where it is
possible to use radar radial wind observations
directly. Observation is modelled with a so
called observation operator.
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Wind profiles

e VAD and VVP methods
assume linear wind field
model.

e When radial wind is

displayed at constant
range and elevation as a

20
function of azimuth N
angle, it will have a form 2
of sine. s
g 10
i —20;
L

20 180 270 360
Azimuth [deg]
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e With VAD/VVP method
from one radar site it is I :
possible to get one
vertical profile of
horizontal wind. e | e |
* Wind profiles are easy to ¢ | o 1
use in all assimilation : s T
methods. ? ==

TIME — UTC
Dako nok oesimilated in UK Modal — Operatianal
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e Radar radial wind is not a
model variable.

 Variational data
assimilation enables use
of observations which
are not model variables.

e The observation is
modelled with a so called
observation operator.
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Radar radial wind

Raw observations Superobservations
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Average V_and fitted cosine

Model Bg Observed

r obs
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Bias as a function of azimuth angle

e Maximum bias 1.19 m/s
e Minimum bias -0.98 m/s
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Radar ref

e TWO met

TTTTTTTTT

ectivity

nods to make use of radar

reflectivity:
a) Define precipitation with Z-R-relation.

b) Use

assimilation method which can make use

of radar reflectivity directly. Observation is
again modelled with a so called observation
operator.
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Radar reflectivity — Radar precipitation

e There is no 'universal' Z-R-relation

- Marshal-Palmer Z =200 R '
- Laws and Parsons Z =400 R '
- Joss and Waldvogel Z = 300 R 13

« Radar precipitation is commonly
assimilated with latent heat nudging (LHN).

e Radar reflectivity can be assimilated
directly in variational assimilation
framework.
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Radar precipitation

e LHN is a method of forcing NWP model towards
observed precipitation rates.

 The model's latent heating is corrected at each
timestep by amount calculated from the difference
between observed and model estimated
precipitation.

e Extra heating acts as a source term in the
thermodynamic equation, which in turn adjusts the
model vertical velocity field and takes the model
precipitation rate closer to the observed.
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Radar precipitation

e 1h accumulated rain rates
a) Observed by Swiss radar network
b) Model simulation with 2.2 km horizontal resolution

c) Model simulation where precipitation observed by
radars is assimilated with LHN-method.
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Radar Observations (a) Without Radar Asilrnilahun With Radar ﬁsshﬂl:ﬂnn

Figures: D. Leuenberger iy



Radar reflectivity

e Variational assimilation enables direct use
of radar reflectivities.

 Observation operator must take into
account:

- The shape of the radar beam
- Bending of the radar beam
- Scattering processes

 Development and testing is ongoing at
AROME/ALADIN framework at Meteo France.
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Radar simulation model (RSM)

e Using predicted hydrometeors and state variables
from NWP model, the RSM is able to simulate radar
reflectivity measurements of any weather radar
situated within the model domain.

e The RSM is useful for

the validation, and hence improvement of
mesoscale models

monitoring model forecasts in real time by
comparing simulated radar images to real ones

estimating some of the errors related to the
retrieval of the surface rain rate from radar
reflectivity measurements.
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Radar simulation model
Applied in model validation

Observed radar

HIRLAM 9 km HIRLAM 3 km reflectivity

HIRLAM MBEA 09AUG2005 00 UTC. Radar reflectivity [dBZ] AM NHH 09AUG2005 00 UTC. Radar reflectivity [dBZ]
VT: 09AUGR2005 18 UTC, +18h Simulation. Antenna 0.8° i
BN ~ — =

served radar reflectivity [dBZ], antenna 0.8°.
\UG2005 18 UTC, +18h Simulation. Antenna 0.8 @ 09AUG2005 18 UTC. Rad: KOR, VAN, ANJ, IKA
— — - BN — Loy 7

T

Max: Max: Max:
o i i % .| 50.0625 ; \ .| 59.376 \ L ]61.7812
%&B 10E 1058 11E 115E 12 I26E 13 1368 14E 14.5E 12E IR5E 1SE 135E ME 14.5E £ .6E
Ax=8.9km Ax=2.8km

Ax=2.8Bkm

Figures: S. Niemela
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Refractivity N

Refraction index has traditionally been seen
as a quantity whose unusual vertical
structure causes anomalous propagation of
radar waves.

On the other hand: refraction index is
strongly related to atmospheric parameters
p, T and q.

For fixed targets only n varies: r=2r2
C
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Refractivity N

 The phase difference to the target's
reference phase is related to changes in n:

AD=4 Tif = An

C
e Refractivity N = (n-1) x 10°,

N=77.6L+373%x10°<
T T*

e At cold temperatures N is mostly a funcion
of T. As the T increases, N becomes more
sensitive to changes in moisture than in
temperature.
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Ref tivity N
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More information:

Alberoni et al, 2003: Quality and assimilation of radar data
for NWP. http://www.smhi.se/cost717/

Lindskog et al, 2004: Doppler radar wind data assimilation
with HIRLAM 3DVAR. MWR 5, 1081-1092.

Caumont et al, 2005: Towards 1D+3D assimilation of
radar reflectivities: ongoing results.
http://ams.confex.com/ams/32Radl1Meso/techprogram/paper 96522.htm

Fabry et al, 1997: On the extraction of near surface index
of refraction using radar phase measurements from
ground targets. J. Atmos. Oceanic Technol., 14, 978-987.
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