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Introduction
• SISL = Semi-Implicit, semi-Lagrangean
• Introduced by Robert 1981 
• First NWP models 1985 – 87, main-stream 

development  88-93 
• ECMWF, HIRLAM, Meteo-France: implementation in 

operational WP  in 1995, Canadian MC2 - 1997
• Main advantage: stability  (approximately 1km of grid-

step corresponds to 1 min in time step) and accuracy
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v –horizontal wind vector, ω – vertical (omega-)velocity, H=RT/g – scale 
height, Φ – non-hydrostatic geopotential,         - hydrostatic geopotential, 

R, Cp – gas constants, p – pressure,  ps - surface pressure
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On the example of semi-elastic dynamics in pressure-coordinates
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Short-notation Eq. of motion in Lagrangean presentation



Outlines of SL scheme
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Discretization

(Explicit 
case)

),()(),2/,2/()(),,()( ttttt ∆−∆−=∗∆−∆−=×=• xxxxx



SL in action
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ψ (●) is the final value on the 
node,  departure value ψ ( )
and forcing  F[ψ(X)] are 
interpolated

Lagrangean 
equation has to 
be solved with 

respect to  
destination-point 

value ψ (●)



Trajectory calculation

1. Departure point (*)  is  find after 2-3 iterations

2. Particle trajectories should be  locally (during ∆t) arcs of circle



As the departure points are located  in between 
nodes,  interpolation is required 

for  departure field ψ (* )

•for  intermadiate field ψ (x)

The interpolation 
routines are the
essential 
components of 
SL   numerics



That was the basic idea 
how SL scheme works

REFINEMENTS 

FOLLOW  HEREAFTER
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Again,  one needs to solve Eq. with respect to  
ψ (●) . However, this time  unknown  ψ (●)  on 
the right side, also. 

Solution is complicated and time consuming. 
Can be solved iteratively, but many iterations 
are needed.



Semi-implicit (SI) scheme

)()( ψψψ NL +=F
partlinear−ψL

residualnonlinear
F

−
−= ψψψ LN )()(



)]([)]()([
2
1)()( ×+∗+•=

∆
∗−• ψψψψψ NLL

t

)]([)()()( ×+×=
∆

∗−• ψψψψ NL
t

[ ])()()( ×=
∆

∗−• ψψψ F
t

Equivalent presentation

Modification
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Solving of 

With respect to ψ (●) gives
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THIS IS THE MAIN EQUATION  OF SISL scheme

(actually, a similar Eq. exists in  any SI scheme)

Elliptic (Laplace, Helmholtz)  operator 



THE FINEST POINT:

CHOISE of the LINEAR PART

This is the  point where  various 
(dynamically identical) SISL 
models  start to differ



The linear part Lψ is actually a part of F(ψ), 
linearised with respect to the reference 
state, specified by  reference temperature 
Tref and surface pressure ps

ref .

General requirement: Lψ must handle (fast) 
buoyancy and acoustic waves 

sss
ref
s

ref

pxptxpp
TpTtpxTT

),(ˆ),,(
),(),,,( 0

=

=



sss
ref
s

ref

pxptxpp
TpTtpxTT

),(ˆ),,(
),(),,,( 0

=

=

The closer is reference state to the actual 
stratification and pressure distribution, the 
smaller is nonlinear residual and the larger is 
numerical stability.

However:  the closer is reference state to the actual stratification and 
pressure distribution, the more complicated and expensive is solution of 
main elliptic equation

Thus, reasonable compromise between requirements of  numerical 
simplicity/stability  and of the closeness of the reference state to 
real atmosphere is  necessary



ECMWF and HS HIRLAM  make 
use of constant Tref and ps
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Meteo-France’ NH model ALADIN makes 
use of  two different constant temperatures, 
and constant surface pressure.

However, as the full-implicit scheme is 
solved iteratively, effectively the actual T and 
ps are used as the reference fields.
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In the NH SISL HIRLAM, horizontal 
area-mean reference  temperature is 
used and constant reference pressure;  
both are time-adaptive. )(
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Choice of reference fields Tref and ps
ref is  

crutial for stability.
•The linear part is always unconditionally stable (which will 
be demonstrated further on)

•However,  the nonlinear residual N(ψ) can  cause 
numerical instability, if the reference fields Tref and ps

ref

are chosen unsuitably
This property is model sensitive:  HS primitive equation model (ECMWF, 
HS HIRLAM), the full elastic model (ALADIN) and semi-elastic model (NH 
HIRLAM) behave differently with respect to reference field specification.  

That is the reason, why Tref and ps
ref are chosen differently in these 

models.  



Stability of SISL
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For elementary demonstration of stability 
of the linear part of SISL, the next 
simple model is instructive. Lagrangean
Eq. of motion becomes a scalar complex 
wave equation:
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Thus, in discrete presentation we  will have



Looking for solution in the form of single 
harmonic wave
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We get for frequency an equation
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As |sin a| <= 1,  |tan a| < ∞, we can conclude:

Explicit scheme is stable for 

∆t ≤ 2t0 ,

whereas the implicit scheme is 
unconditonally stable



Advantages of SISL
Large numerical stability, which  results in  

– Increased time-step 
– Increased modelling area of LAMs
– Enhanced resolution 

Coarse estimation: 1 km of resolution ->  1 min in time 
step (experience with NH SISL HIRLAM):

∆x=20-40 km: ∆t=15 min;
∆x=10 km: ∆t=10 min;
∆x=  3 km: ∆t=3 min;
∆x=  1 km: ∆t=1 min;

However, these estimates hold for  predominantly 
horizontal (advective) dynamics.



Disadvantages of SISL 
(if any)

• Multiple interpolations act as spectral smoothing:
– Smoothing of fine details
– Weak extra energy dissipation 
– No additional spectral filtration  required

• Requires solution of an elliptic equation, which is a time-
consuming procedure
[All SI approaches have the same deficiency; 
The so-called split-explicit schemes are free of the shortcoming, yet 

possess  another time-consuming mechanism do to the  
existence of the small ‘internal’ time step] 



There is no  SISL experience with (strong explicit) 
convection modelling:
We don't know, how useful is SISL at, say,  100 m
horizontal and vertical resolutions, when vertical 
velocity becomes large ( ≥1 m/s )

Unresolved problems

It is expected, however, that  SISL will 
operate ‘normally’, if condition 

∆t≤2 ∆L/U,
where ∆L is interval between nodal points 
and U is 3D wind-speed,  see the next slide.
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Trajectory calculation
is correct

Lower case:
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Restriction to 

the time step:

which gives ∆t = 1 min.      for ∆x= 1000 m,  U = 30 m/s
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THE END


