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Global scales
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Some mountain-related atmospheric processes

Scale Orographic phenomena Time scale Horizontal scale Essential dynamics

Planetary Planetary waves Weeks 1000 - 10000 km barotropic, hydrostatic
conservation of absolute vorticity

Cyclo- and frontogenesis baroclinic
Synoptic Large-scale precipitation Days 100 - 1000 km quasi-geostrophic, hydrostatic

Orographic lift conservation of potential vorticity

Buoyancy waves and blocking1 1stable stratification
Meso Local (thermal) circulations Hours - Day hydrostatic → nonhydrostatic

Orographic convection 1 - 100 km rotating → nonrotating
Fog and low clouds directional effects

Small Turbulent eddies Minutes - Hours 100 m - 1 km non-hydrostatic
Micro 10 m non-rotating

isotropic
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Orography-related waves in atmosphere
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Momentum equation

The equation of horizontal hydrostatic motion in a pressure-based, terrain-following
hybrid vertical ζ-coordinate system (Simmons and Burridge, 1981) is written following
Kasahara, 1974:

d~v

dt
= −

1

ρ
∇ζp−∇ζΦ− f~k × ~v−

g

ps

∂~τ

∂ζ
, (1)

where ~v is the horizontal wind, ∇ζ is the gradient operator applied along the constant

ζ-surface, ~k is the unit vector in direction of ~g, g is acceleration due to gravity, Φ = gz is
geopotential, ρ is density of air, p is pressure and ps surface pressure. ~τ = −ρ~v′w′ is the
stress vector related to the subgrid-scale vertical momentum fluxes; w is the vertical
velocity, an overline denotes gridbox average and a prime ′ subgrid-scale deviation.
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Orography-related issues in a NWP
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Orography-related issues in a NWP

Boundary conditions
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Orography-related issues in a NWP

Boundary conditions

Lower boundary condition

Upper boundary condition

Lateral boundary conditions over mountains
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Orography-related issues in a NWP

Boundary conditions

Lower boundary condition

Upper boundary condition

Lateral boundary conditions over mountains

Numerical problems
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Orography-related issues in a NWP
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A Carpathian example
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A Carpathian example
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Illustrating terrain-following vertical coordinate - 1
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Illustrating terrain-following vertical coordinate - 2
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Illustrating terrain-following vertical coordinate - 3
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Illustrating terrain-following vertical coordinate - 4
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Smoothed mean orography
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Resolved and parametrized forcing

50 60 70 80 90 100 110 120

Distance (km)

600

800

1000

1200

1400

1600

1800

H
ei

gh
t(

m
)

Zoom: Mountain profile

65m
3.3km
10km
32km

http://http://hirlam.org


Home Page

Title Page

JJ II

J I

Page 15 of 30

Go Back

Full Screen

Close

Quit

Resolved and parametrized forcing
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Parametrization of subgrid-scale momentum fluxes
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Parametrization of subgrid-scale momentum fluxes

Tendencies of the horizontal wind ~v(x, y, z)

- explicitly resolved and parametrized:
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Parametrization of subgrid-scale momentum fluxes

Tendencies of the horizontal wind ~v(x, y, z)

- explicitly resolved and parametrized:

∂~v
∂t

= (∂~v
∂t

)d + (∂~v
∂t

)p
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Parametrization of subgrid-scale momentum fluxes

Tendencies of the horizontal wind ~v(x, y, z)

- explicitly resolved and parametrized:

∂~v
∂t

= (∂~v
∂t

)d + (∂~v
∂t

)p

Parametrized tendency is due to

divergence of the stress tensor τij:
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Parametrization of subgrid-scale momentum fluxes

Tendencies of the horizontal wind ~v(x, y, z)

- explicitly resolved and parametrized:

∂~v
∂t

= (∂~v
∂t

)d + (∂~v
∂t

)p

Parametrized tendency is due to

divergence of the stress tensor τij:

(∂~v
∂t

)p = 1
ρ

∂~τ
∂z

, ~τ = −
∑n

j=1 ρ(~v′w′)
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Parametrization of subgrid-scale momentum fluxes

Tendencies of the horizontal wind ~v(x, y, z)

- explicitly resolved and parametrized:

∂~v
∂t

= (∂~v
∂t

)d + (∂~v
∂t

)p

Parametrized tendency is due to

divergence of the stress tensor τij:

(∂~v
∂t

)p = 1
ρ

∂~τ
∂z

, ~τ = −
∑n

j=1 ρ(~v′w′)

Stress tensor τij consists of

friction, form drag and wave drag contributions:
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Parametrization of subgrid-scale momentum fluxes

Tendencies of the horizontal wind ~v(x, y, z)

- explicitly resolved and parametrized:

∂~v
∂t

= (∂~v
∂t

)d + (∂~v
∂t

)p

Parametrized tendency is due to

divergence of the stress tensor τij:

(∂~v
∂t

)p = 1
ρ

∂~τ
∂z

, ~τ = −
∑n

j=1 ρ(~v′w′)

Stress tensor τij consists of

friction, form drag and wave drag contributions:

~τtotal = ~τfriction + ~τformdrag + ~τwave
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Parametrization of subgrid-scale momentum fluxes

Tendencies of the horizontal wind ~v(x, y, z)

- explicitly resolved and parametrized:

∂~v
∂t

= (∂~v
∂t

)d + (∂~v
∂t

)p

Parametrized tendency is due to

divergence of the stress tensor τij:

(∂~v
∂t

)p = 1
ρ

∂~τ
∂z

, ~τ = −
∑n

j=1 ρ(~v′w′)

Stress tensor τij consists of

friction, form drag and wave drag contributions:

~τtotal = ~τfriction + ~τformdrag + ~τwave

horizontal scale ⇒
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Parametrization of subgrid-scale momentum fluxes

Tendencies of the horizontal wind ~v(x, y, z)

- explicitly resolved and parametrized:

∂~v
∂t

= (∂~v
∂t

)d + (∂~v
∂t

)p

Parametrized tendency is due to

divergence of the stress tensor τij:

(∂~v
∂t

)p = 1
ρ

∂~τ
∂z

, ~τ = −
∑n

j=1 ρ(~v′w′)

Stress tensor τij consists of

friction, form drag and wave drag contributions:

~τtotal = ~τfriction + ~τformdrag + ~τwave

horizontal scale ⇒

stability ⇒
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Parametrization of subgrid-scale momentum fluxes

Tendencies of the horizontal wind ~v(x, y, z)

- explicitly resolved and parametrized:

∂~v
∂t

= (∂~v
∂t

)d + (∂~v
∂t

)p

Parametrized tendency is due to

divergence of the stress tensor τij:

(∂~v
∂t

)p = 1
ρ

∂~τ
∂z

, ~τ = −
∑n

j=1 ρ(~v′w′)

Stress tensor τij consists of

friction, form drag and wave drag contributions:

~τtotal = ~τfriction + ~τformdrag + ~τwave

horizontal scale ⇒

stability ⇒

non-dimensional mountain width GL = NL/U ⇒
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Components of subgrid-scale drag

drag related to momentum sink scheme

~τts turbulent drag due to surface roughness 2D ISBA ⇒ CBR
~τo drag due to unresolved small-scale orography 2-3D SSO ⇒ CBR
~τm blocked flow drag due to mesoscale orography 3D MSO
~τw drag due to breaking buoyancy waves 3D MSO
~τt turbulence above surface layer 3D CBR

Orography-related parameters

param description unit usage scale (km) filtering

st mean maximum small-scale slope rad SSO < 3 km high-pass
σt mean small scale standard deviation J/kg SSO < 3 km high-pass
σm mean meso-scale standard deviation J/kg MSO 3 km . . . 3∆x band-pass
α coefficient of anisotropy - MSO 3 km . . . 3∆x band-pass
Θ x-angle of orography gradient rad MSO 3 km . . . 3∆x band-pass
H mean surface elevation m dynamics > 3∆x low-pass

http://http://hirlam.org
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Parametrization of mesoscale orography (MSO) effects

The buoyancy wave drag is estimated by a formula based on the linear two-dimensional
theory,

~τws = Kg · ρs ·Ns · ~vfs · h2
m, (2)

where the index s refers to mean near-surface values, Kg is a tuning parameter depending
on the model resolution (here Kg = 3.5 · 10−06m−1), N is the buoyancy (Brunt-Väisalä)
frequency, N2 = g

θ
∂θ
∂z

, hm is the subgrid-scale mountain height based on the standard
deviation of mesoscale orography and ~vfs is a (fictive) surface wind representing the
layer between surface and hm and parallel to the stress vector ~τws.

As long as there is no wave dissipation, the wave momentum flux is constant with
height. The momentum sink is realized when the waves break. The parametrization
of wave breaking processes follows Lindzen’s saturation theory. In addition, (nonlinear)
wave reflection from a breaking level is taken into account. Wave breaking and reflection
modify the surface value ~τws and the profile of the wave drag ~τw(z).

Low level flow blocking is assumed if a non-dimensional mountain height G, depend-
ing on stability, mountain height and upstream wind, exceeds a critical value.

G = Ns
hm

Up

(3)

where Up is the velocity of the upstream wind component perpendicular to the ridge
below hm. The blocked flow stress ~τm at each (low troposphere) model level is calculated
according to Lott and Miller (1997). Finally, it is combined with the wave drag vector
~τw.
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Parametrization of small-scale orography (SSO) effects

The drag due to the small-scale orographic features is parametrized as

~τos(z) = Co
~τts

ρs

s2
t (4)

where Co is an orographic drag coefficient and st denotes the mean maximum small-
scale slope (tangent) over the grid-square. According to Eq. (4), the surface orographic
stress ~τos = Co

~τts

ρs
s2

t is parallel to the turbulent stress ~τts, which is determined by the wind
and stability in model’s surface layer. The vertical decay of the orographic stress is
taken care by the turbulence parametrizations.
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Two-dimensional spectra
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Filtered spectra
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About physics-dynamics interactions

1
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Norwegian validations of MSO-SSO
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Wind speed Finsevatn 07.01.2005 − 15.01.2005

m
/s

Min Mean Max Std N
synop:  00,...,21 /3 0.1 10.2 21.1 5.5 72
NOR:  00+3,...,+24 /3 1.1 6.5 12.7 2.4 70
NOF:  00+3,...,+24 /3 0.9 9.5 17 4 71

ME SDE RMSE MAE Max.abs.err. N
NOR − synop −3.7 3.8 5.2 4.3 11.8 70
NOF − synop −0.7 3.2 3.3 2.6 7.6 71
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Wind speed Finsevatn 07.01.2005 − 15.01.2005

m
/s

Min Mean Max Std N
synop:  00,...,21 /3 0.1 10.2 21.1 5.5 72
SM4:  00+3,...,+24 /3 1 9.7 18.8 4.5 72
NOF:  00+3,...,+24 /3 0.9 9.5 17 4 71

ME SDE RMSE MAE Max.abs.err. N
SM4 − synop −0.5 2.8 2.8 2.3 6.2 72
NOF − synop −0.7 3.2 3.3 2.6 7.6 71
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Wind speed Finsevatn 07.01.2005 − 15.01.2005

m
/s

Min Mean Max Std N
synop:  00,...,21 /3 0.1 10.2 21.1 5.5 72
SM4:  00+3,...,+24 /3 1 9.7 18.8 4.5 72
NOF:  00+3,...,+24 /3 0.9 9.5 17 4 71

ME SDE RMSE MAE Max.abs.err. N
SM4 − synop −0.5 2.8 2.8 2.3 6.2 72
NOF − synop −0.7 3.2 3.3 2.6 7.6 71
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Concluding remarks

Orography defines the lower boundary condition and vertical coordinate of a NWP
model. Mountains are a source of wave-like and turbulent disturbances and local
circulations in the atmosphere.

Model dynamics is able to resolve orography forcing larger than (4-8)∆x. Effects due
to smaller features need to be parametrized.

Different scales and physical processess create subgrid-scale momentum fluxes and
(surface) drag. Scale-dependent parametrizations are needed.

Historically, the different parametrizations have been developed independently. Dur-
ing model simulations, they interact and effects may compensate each other and
resolved-scale dynamical processess.

A challenge for parametrizations in fine-scale models: unified handling of turbulent
breaking of buoyancy waves in free atmosphere and planetary boundary layer.
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Some recent papers

Geleyn J.F., F. Bouyssel, B. Catry, I. Beau, R. Brozkova, D. Drvar and L. Gerard,
2006. The mountain drag/lift parameterisation scheme in ARPEGE/ALADIN.
Submitted to Tellus.

Rontu L., 2006. A study on parametrization of orography-related momentum fluxes
in a synoptic-scale NWP model. Tellus A, 58, 68-81.

Rontu L., K. Sattler and M. Homleid, 2006. Parametrization of mesoscale and small-
scale orography effects in HIRLAM - final tests. HIRLAM Newsletter 50, mm-nn.
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Thank you!
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Vorticity equation

Application of the gradient operator ~k ·∇ζ× gives an equation for the vertical component

of absolute vorticity η as a sum of relative (ξ = ~k · ∇ζ × ~v) and planetary (f) vorticity,

η = ξ + f

∂ξ

∂t
= −~v · ∇ζη −ζ̇

∂η

∂ζ
(a) (b) (c)

−η∇ζ · ~v −~k · ∇ζ ζ̇ × ∂~v
∂ζ

−
1

ps

∂J(p, Φ)

∂ζ
(d) (e) (f)

− g
ps

∂(~k·∇ζ×~τ)

∂ζ
(5)

(g)

Here, ζ̇ = dζ
dt

is the vertical velocity in the ζ coordinate system and J(a, b) denotes

a Jacobian, defined as J(a, b)=∂a
∂x

∂b
∂y
− ∂b

∂x
∂a
∂y

. The hydrostatic assumption 1/ρ = −∂Φ
∂p

was used in derivation of Eq. (5). The terms of the vorticity equation represent the
local time change of vorticity (a), horizontal (b) and vertical (c) advection, stretching
(d), tilting induced by the nonuniform vertical velocity (e), change of vorticity due to
baroclinicity (f) and frictional forces (g).
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Vertically integrated vorticity equation

Eq. (5) can be integrated over an atmospheric column from the surface p = ps (ζ=1)
to the top of atmosphere p = 0 (ζ=0). At the upper boundary ~τ=0, at the surface
~τ=~τs. Denoting the integral by a hat, ϕ̂=

∫ ps

o ϕdp
g

, we get

∂̂ξ

∂t
+~̂v · ∇ζη +

̂̇
ζ
∂η

∂ζ

+η̂∇ζ · ~v +
̂~k · ∇ζ ζ̇ × ∂~v

∂ζ

= −J(ps, h) −~k · ∇ζ × ~τs, (6)

where h is the surface elevation. The term J(h, ps) results from vertical integration of
the baroclinic term (term (f) in Eq. (5)) and represents the joint effect of baroclinicity
and orography. Over a level surface this term disappears. It represents the grid-scale
surface torque explicitly resolved by the model. In Eq. (6) both (terrain-related) source
terms have been written on the right-hand side of the equation, to balance the local
change and redistribution terms on the left.
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