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1.  BASIC EQUATIONS  - physical basis

Budget Equations for Momentum , Mass , Heat , Water Components

constitute a model describing the impact of  gravity and Earth rotation
over an enormously wide spectral range of internal processes caused 
by heat, mass, momentum, radiation transfer and phase changes of

water essentially determined by turbulence.
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1.1  Coordinate-free basic equations
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- molecular stress tensor - molecular dissipation

- gravitational  potential       

- Earth rotation vector

- radiation flux vector

- diffusion flux of heat (of kq )

- source / sink of kq

Doms, G. et al.,2002 :
LM documentation

Part I: Dynamics and
Numerics

(www.cosmo-model.org)

ρ
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1.2  Choice of basic equations dependent on a following
numerical scheme

momentum equations
total mass equation (continuity equation)
enthalpy equation
water constituent equations

+ equation of state

elimination of densitymain-stream 
approach

Prognostic equation for pressure
instead of total density

continuity equation is hidden !
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1.3  Common physical approximations

- original budget equations formulated for mean flow by Reynolds 
averaging approach ( van Mieghem 1973 )

- molecular fluxes, dissipation and almost all molecular
diffusion fluxes  are neglected compared to turbulent flux terms

- latent heat of vaporation and sublimation assumed constant
- specific heats of moist air are replaced by specific heat of dry air

5
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1.3  Common physical approximations
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Dudhia 1993, MWR 121
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Definition of heat source term 
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Definition of moisture source term
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1.4  Mass-consistent formulation of T - and  p – prognostic
equations
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mass-consistent approach
source terms in prognostic 
p-equation often neglected  

Dudhia 1993 , Doms et al. 2002

up to here coordinate-free  –
parameterisation problem dropped in the lecture
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1.5  Spherical coordinates formulation of
adiabatic dry model part

Equation system to start from:
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Deep-Atmospheric Non-hydrostatic Equations
for a Rotating Spherical Atmosphere

Lagrangian formalism from Theoretical Mechanics applied 
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Specifications
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Literature:
Hinkelmann,K.H.: Primitive
equations. WMO Training Seminar.
Moscow 1965, pp.306-375.
White,A.A. et al.: Consistent 
approximate models of the global 
atmosphere...
Q.J.R.Meteorol.Soc. 2005, 131,
pp.2081-2107.relevant for ‘Unified Model’ of UK Met Office!
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Consistent shallowness-approximation 
via the Lagrange route

spherical geometry : a - constant Earth radius

zar += z( - variable  )

shallowness : za >>
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shallow spherical equation

momentum equations

g
z
p

td
wd

p
a

u
a

u
td
vd

p
a

v
a

u
td
ud

−
∂
∂

−=

∂
∂

−=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+Ω+

∂
∂

−=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+Ω−

ρ

ϕρ
ϕ

ϕ

λϕρ
ϕ

ϕ

1

1cos
cos

2

cos
1sin

cos
2

continuity equation
( ) 0cos

cos
11

=
∂
∂

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂
+

∂
∂

+
z
wvu

atd
d

ϕ
ϕ

λϕ
ρ

ρ

first law of thermodynamics

00
cos

≠∪=
∂
∂

+
∂
∂

+
∂
∂

+
∂
∂

=
z

w
a
v

a
u

ttd
d θ

ϕ
θ

λ
θ

ϕ
θθ

15



Comparison with deep equations indicates that the shallowness
approximation , consisting of

- ‘traditional approximation’ ( neglecting the                  -terms 
Eckart  1960  )

ϕcos2Ω

- ‘shallow - approximation’ (                                       )     

- ‘small-curvature approximation’ ( neglecting

in momentum equations, and              in the continuity equation ) ,

is achieved dynamically consistent as  one package with the Lagrangian
approach .    
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Basic Equations
constituted by physical laws

having always simplifications down to parameterisations. 
Choice of prognostic variables/equations

anticipates the way of  numerical integration process

Spherical coordinates

Shallowness-approximation
and/or

Hydrostatic approximation

Projection-plane
equations

by mapping

Unified Model
Philosophy

Rotated spherical
coordinates Global Model

Limited Area
Model

Linear Mode Analysis
for understanding dynamics

of the model core

Some simplified overview 17



2.  Linear Mode Analysis

Importance and meaning of a linear mode analysis is to recognise
essential properties of the compressible non-hydrostatic model 
equations and understand simplifications due to filtering. 
Why are the full equations important and interesting enough to become 
increasingly standard model equations?

The modes involved are
- Rossby-, or advective mode
- Internal gravity (buoyancy)-inertial modes
- Acoustic modes
- Lamb mode

Literature: Miller, M. , 2002 : Atmospheric Waves.
Meteorological Training Course Lecture Series,  ECMWF.

Changnon, J. M. , P. R. Bannon , 2005 : Wave Response during 
Hydrostatic and Geostrophic Adjustment. 
Part I : Transient Dynamics. JAS, 62 , May 2005 , 1311-1329.

Thuburn, J. , N. Wood, A. Staniforth , Normal modes of deep atmospheres.
2002 a : Spherical geometry. Q.J.R.M.S. 128 , pp. 1771-1792.
2002 b : f - F - plane geometry. Q.J.M.S. 128 , pp. 1793-1806.
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2.1  Linear model framework

Linear Model framework
Compressible , dry , inviscid , unforced , ideal gas ,
Cartesian coordinates , f - plane , invariant in y-direction ,
Linearisation on f - plane about constant basic current
and height-variable basic state temperature with constant
stability.

Introduction of ‘ field variables ‘ in the sense of Eckart 1960
( cf. Gassmann and Herzog 2006 )*

( ) ( ) ppTcwuTwu st
ps

t ′=′′′=
ρ
ρρρ :,:

* Gassmann and Herzog :  A consistent Time-Split Numerical Scheme
applied to the Nonhydrostatic Compressible Equations.
- accepted to be published in:  Monthly Wea.Rev. 2006
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2.1  Linear model framework
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General case :
nonhydrostatic

compressible

1=µ
∞<2
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2.2 Vertical structural solution
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2.3  Horizontal structural equation

( ) ( )txktxw nn ω−sin~, ( ) ( )txktxp nn ω−cos~,
wave solution

frequency equation
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Gossard and Hook , 1975 : Waves in the Atmosphere. p. 112, eq. (23.7)

All possible wave frequencies of the given linear model are contained in the 
frequency equation above. They are going to be discussed in the following.
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Nonhydrostatic
- incompressible/anelastic ∞→= 21 scµ
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Hydrostatic approximation
- compressible/elastic ∞<= 20 scµ
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- acoustic mode filtered out due to hydrostatic
approximation

- hydrostatic filtering, however, is insufficient to represent
gravity waves with high-resolving models

- Motivation for nonhydrostatic modelling!
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2.4   Analytical solution

Nonstationary solutions for linear cases considered above
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g w

nn
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ωθ
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cos~,, 2

( ) ( ) ( )( )ztxktzxw w
nn ψω−sin~,,

The vertical structural function                             is sufficient to represent
the vertical structure of the variables                             .

( )( )zp
nψ ( )( )( )zw

nψ
( )θ,,, wpvu

This finding suggests for a vertical difference approximation the application of
a Charney-Phillips ( CP- ) grid instead of a Lorenz ( L- ) grid!
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2.4   Analytical solution

( ) ( )zp Γ−=exp0ψ ( ) 00 =wψ0=n
22

0 Γ−=ν 02 =−
nh

The case

with

defines the Lamb mode which is a particular solution of the vertical
structural equations with boundary conditions included. Its
frequency is

indicating a horizontally propagating acoustic wave evanescent in
vertical direction. For a pure Lamb wave 

and          is valid.

( ) 222
0

2
so ckUk ≈−= ωσ

0=w 0=θ
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2.5 Simplified scheme towards filtered equations
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Nonhydrostatic model equations
Hydrostatic ( primitive ) 

equationsCompressible/elastic Incompressible/anelastic *

equations with full
physical structure

full set of prognostic
variables

0=
∂
∂

+⎟
⎠
⎞

⎜
⎝
⎛ Γ−
∂
∂

x
uw

z

filter condition:

0=
td

dp

reduction of equation set due to reduction to hydrostatic equation

0=
td

dw
0=−⎟⎟

⎠

⎞
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⎝

⎛
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∂
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θ
θ

pc
gp

z

( ) tzxFpp
zx

∀=Γ−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
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2

2

2
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boundary value problem constitutes a
diagnostic relation for p

filter condition:

boundary value problem 
constitutes  a diagnostic 
relation for  w

( ) tzxGw
Hz

w
∀=−

∂
∂ ;,

4
1

22

2

Internal acoustic and
gravity waves are com-
pletely contained.

Internal gravity waves are com-
pletely contained, acoustic waves
are filtered out.

Internal gravity waves are 
contained, but insufficiently
presented        
acoustic waves excluded.

( )22
zx LL >>

Hydrostatic and geostrophic 
adaptation

Hydrostatic and geostrophic adaptation
Geostrophic adaptation

Damping/filtering of acoustic waves
due to an appropriate numerical
scheme  ( split-explicit , 
semi-implicit-semi-Lagrange )
Models: MM5, LM, WRF-NCAR,

UK-Unified Model,  etc. ...
WK78 , Cullen, Gassmann

Numerical treatment of elliptic pressure
equation is difficult and needs  to be done

with care (terrain-following coordinate).
An excellent research model is EULAG
(Grabowski, W.W.,P.K.Smolarkiewicz,
2002,MWR 130, 939-952.)

Most operational global and limited
area models are hydrostatic.

* refinements of anelastic approximation: P.B.Bannon,1996, J.Atm.Sc. 53, No.23, 3618-3628.
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3.  Vertical coordinates

The choice of an appropriate vertical coordinate is always to aim at improving
simulations over mountainous terrain

Introduction of  terrain-following vertical coordinate in meteorological modelling 
by   Phillips 1957 , Gal-Chen and Somerville 1975 , applying a terrain-following
normalisation with surface pressure ( time-dependent coordinate  -> deformable )
or surface-height ( time-independent coordinate -> nondeformable )

- Phillips’ sigma-coordinate  ->  larger-scale hydrostatic modelling
- Gal-Chen’s coordinate        ->  small-scale nonhydrostatic modelling

.

There are problems in computing the pressure gradient term with pressure
coordinate in hydrostatic models in case of steeper mountains which has led to
the introduction of step-terrain orography ( Mesinger 1984, Mesinger et al. 1985,
1988  -> NCEP Regional Eta Model ), which seems however not appropriate in
nonhydrostatic modelling ( Gallus and Klemp 2000 ).

.
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Revival of  Z-coordinate as shaved-cell approach in combination with
finite-volume method – a possible breakthrough ?

.



step topography
in Z- coordinate model

terrain-following 
coordinate model

Z-coordinate model
with piecewise constant slopes

(shaved-cell approach)

3.1  Representation of mountains in nonhydrostatic models

Revival of  Z-coordinate in nonhydrostatic modelling !

Bonaventura, L.  , 2000:
J. of Comput. Phys. 158, 186-213.

Gallus,  A. W., J. B. Klemp, 2000:
MWR 128 , 1153-1164.

Adcroft, A. et al. , 1997:
MWR 125 , 2293-2315.
( for Ocean Modelling )

Steppeler, J.  et al. , 2002:
MWR 130 , 2143-2149.
( application in LM )

research state ! research state !

Applied in several non-
hydrostatic models even

in operational mode
( LM , MM5 , UK , etc. )

smooth slope

smooth slope
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3.2  Introduction of a time-independent terrain-
following coordinate

Vertical coordinate        may be any monotonic function of geometrical height.ζ
This      -system is fixed in  physical space, and is non-orthogonal.ζ
It is of Gal-Chen type.

The lowest coordinate surface of constant         coincides with the smooth 
model orography.

The lower boundary condition seems easy but should be formulated
carefully and consistent which is actually not simple to be done.

.

.

.

.
ζ

How to transform the basic equations into such a 
non-orthogonal      - system?ζ

Method : 
Start from the basic equations in covariant vector form

33
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3.3   Transformation method

Literature: Dutton, J.A. , 1986 : The ceaseless wind.  pp. 129-144 , 248-251
Pielke, R.A. , 1984 : Mesoscale Meteorological Modeling. pp.102-127
Gal-Chen, T. , R.C.J. Somerville , 1975 : On the use of a coordinate
transformation for the solution of the Navier-Stokes equations.
J.Comput.Phys. 17, 209-229

Zdunkowski, W., A.Bott : Dynamics of the Atmosphere. A course in
Theoretical Meteorology. Cambridge Univ.Press 2003.

Brief survey of the method
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3.3   Transformation method

further specifications
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3.3   Transformation method

with ( ) ( ) ( )tzyxpzptzyxp ,,,,,, 0 ′+= ( )ζ,,, yxzz =

and the definition 0~
~: >

∂
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∂
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−=−=
ζ
z

x
xGG j

i

(left-handed system!)

We arrive finally at the nonhydrostatic equations in the        - system
assuming a dry-adiabatic, unforced, inviscid model atmosphere, here
for the sake of simplicity, in a                  - system .  
A peculiarity of most models is to use a prognostic variable in the vertical
momentum equation which is not the contravariant vertical wind component

but the common covariant variable                instead .
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hydrostatic vertical distribution of  basic state pressure      !( )zp0

flux-form very important
for model implementation!
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3.4   Transformed equations

Nonhydrostatic equations
written with generalised
terrain-following      - coordinate

Further introduction of spherical
coordinates - with shallowness-
approximation - leads to the dynamical
core equations of the Lokal-Modell (LM)

ζ

relation between contravariant
and physical vertical motion
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Mind the pressure gradient terms !



3.5  Lower boundary condition

… has an important practical implication. It should be formulated as 
consistent as possible within a given numerical scheme, where the scheme
is also necessary to be adapted to this problem.  A successful approach 
has been developed by Almut Gassmann*. 

At terrain-following lower boundary (LB) free-slip condition :
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*Gassmann, A. , 2004 : Formulation of the LM’s Dynamical Lower Boundary Condition.
COSMO-Newsletter No.4, Febr. 2004,  155-158.   (www.cosmo-model.org)

Gassmann, A. , H.-J. Herzog , 2006 : A consistent time-split numerical scheme applied to the
nonhydrostatic compressible equations.  MWR, accepted to be published.
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3.6  Upper boundary condition

. Non-penetrative boundary condition at 0=ζ

- rigid  lid  ( flat ) 

- no mass flux across the boundary  ( ) 0...,,, =
∂
∂ Tvu
ζ

Danger of wave reflection without additional absorbing remedies !
Sponge technique ( philosophy of Davies + Kallberg 1976, 1983 ) 

. Radiative upper boundary condition

It is possible to be implemented in a nonlinear nonhydrostatic 
model (LM) for real-data integrations, although resting on limited 
assumptions ( linear, hydrostatic, incompressible 
Klemp, Durran 1983, and  also Bougeault 1983 )

demonstrated in Almut Gassmann’s lecture

w
k
Np ˆˆ ρ

=′

0==wζ&
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Neumann boundary
condition at 

relevant for
implementation
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V.BJERKNES , who was the first advocat of  NWP, wrote 1904 :
‘ If it is true, as every scientist believes, that subsequent atmospheric states
develop from the preceding ones to physical law, then it is apparent that the 
sufficient and necessary conditions for rational solution of  forecasting
problems are the following:
. . .  A sufficiently accurate knowledge of  the laws according to which one
state of the atmosphere develops from another . . . The problem is of  huge
dimensions. Its solution can only be the result of a long development . . .’

1998, when  A. ARAKAWA retired , he has reflected  Bjerknes‘ famous
note such : ‘ I will not be able to see the completion of the ‘great challenge’, 
but I am happy to see at least its beginning .’

Where we are now ?

4. Some reflections – all the problems are already thought over 42



5. Outlook

.
Outline of main points :

Increasing tendency towards unified global non-hydrostatic models
Tendency towards global gridpoint models  
Introduction of quasi-homogeneous, quasi-isotropic grids 

( geodesic grid : icosahedron polyhedron ) . New formulation principles  in view of a Vortex-Energy Theory
( Nambu-bracket theory) from P. Nevir ( 1993, 1998 ) opens the way 
for the construction of new spatial difference schemes generalising
the classic ideas from Arakawa for the Jacobian operator up to the 
general adiabatic nonhydrostatic compressible equations connecting 
both global and local accuracy . Recent suggestions for such new
difference constructions have been made by  R.Salmon (2005).

Literature:  
Heikes,R., D.A.Randall,1995: MWR 123,1881-1887.
Majewski,D. et al.,2002: MWR 130,319-338.
Salmon, R.,2005: Nonlinearity 18,R1-R16.
Nevir,P.,R.Blender,1993:J.Physics A 26,L1189-L1193.
Nevir,P. 1998: Habilitationsschrift, FU Berlin,317p.
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I invite you to take place in this boat !
. . . and  in any case, thank you
for your attention and 
your patience that
you followed
me !
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Cartoon of Norman Phillips, from: Dynamic Meteorology (ed. P.Morel) 1973


	
	

