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1. BASIC EQUATIONS - physical basis

Budget Equations for Momentum , Mass , Heat , Water Components

constitute a model describing the impact of gravity and Earth rotation
over an enormously wide spectral range of internal processes caused
by heat, mass, momentum, radiation transfer and phase changes of
water essentially determined by turbulence.




1.1 Coordinate-free basic equations

D
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momentum equations

total mass equation (continuity equation)

enthalpy equation
water constituent equations

+ | equation of state

main-stream elimination of density

approach

Prognostic equation for pressure
instead of total density
continuity equation is hidden !




Common physical approximation

- original budget equations formulated for mean flow by Reynolds
averaging approach ( van Mieghem 1973)
- molecular fluxes, dissipation and almost all molecular
diffusion fluxes are neglected compared to turbulent flux terms
- latent heat of vaporation and sublimation assumed constant
- specific heats of moist air are replaced by specific heat of dry air

f

turbulence averaging symbols dropped



1.3 Common physical approximations
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we follow this line

(e.g. LM and MM5)
Doms et al. 2002
Dudhia 1993, MWR 121

Bryan and Fritsch
2002, MWR 130
- overview article -




1.3"Common physical approximations @ 7

Definition of heat source term

1
QT ::—Qh
,Ode
QT:—LV- (H + §)+ Lg,bg
,Ode de de

Radiation flux
Diabatic heating due to

cloud microph_ysical
A 1 V. H - 1 V'de p\—/»n-l- sources per unit mass
pcpd IOde SI I | /
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1.3 Common physical approximations (5 8

Definition of moisture source term

1
Qu : p— Q.
Q=BT (1-Rv - AT (05 | BT fo (1w (514 )

Cloud heat sources
Turbulent flux for
water constituents /
Precipitation (gravitational diffusion) fluxes
FX:p\—inszW q kN a /
Z

x=v,I,f
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1.4 Mass-consistent formulation of T - and p — prognostic & 9

equations
dT 1 d
= k QT
dt ,Ode ﬂ
dp C _ [ Cpa de
—=— " pVV+|——-1|pcC —~ pC
dt c. P (Cvd ],0 deT C.. P deM

source terms in prognostic
p-equation often neglected

-—

iT__ P vy
dt pcvd

C
%—_ﬂpvv
dt Coq

Dudhia 1993 , Doms et al. 2002

\ mass-consistent approach

il : (QT +Q|v|)

LI S )
dt pCvd Cvd

dp Cpd - (de j Cpd
=———pVV+| —-1|pCyQr +——pC,Qy
dt Cvd Cvd i c:vd i

up to here coordinate-free —

parameterisation problem dropped in the lecture
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introducing spherical coordinates s ST @

longitude /1

Radial distance

how to do that ? n from Earth centre



- Deep-Atmospheric Non-hydrostatic Equations ' 11
for a Rotating Spherical Atmosphere

Lagrangian formalism from Theoretical Mechanics applied

Newton‘s second law of motion d(@l_) . — _19p
dt\oq, ) oq P 0q,
1 d OC
continuity equation —Dd—(p D )+a—qk =0
PO Ok k=123
o0 . 06
first law of thermodynamics ek’
ot 00,
qk J qk - generalised coordinates D2 = o°T functional determinant
O qj@qk squared
L=T —¢, - Lagrangian function
_ N . \2 :
T ZEVZ ZE ar - kinetic energy (d r) - metric form
2 2\ dt

¢N — ¢N (qk ) - Newtonian gravitational potential



Specifications Y @ 12
qk:ﬂ”(ﬁir : qk=2+Q,¢,f
d¥ = (rcospdi, rde, dr)
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we define : UZZFCOS(DZ , Vi=ro , Wi=r n
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momentum equations

deep equations

@_ 13

d—u—2£ls,|ngov+2£2003gaw+u—tango+M . ob__ 1 0¢
dt r r  prcosg 04 rcoseg 04
2
d—V+ZQsingou +u—tango+M _ 1 0P N
dt r r pr op r o@
2 2
d—W—ZQCOS§0U u+vt 10p 99
dt r p or or
continuity equation
1dp 1 (o6u o ow 2
; dt T rcos g [5/1 T 0o (VCOS(D)j‘Fm_'_rW =0 Literature:
- Hinkelmann,K.H.: Primitive
: : equations. WMO Training Seminar.
first law of thermodynamics Moscow 1965, pp.306-375.
do (96? u o6 LV Vv 89 W@Q 0 U0 White,A.A. et al.: Consistent
dt 5'[ rcoso Y 5(0 ar :t)rﬂ(r)zglhn;?:imodels of the global

relevant for ‘Unified Model’ of UK Met Office!

Q.J.R.Meteorol.Soc. 2005, 131,
pp.2081-2107.



| Consistent shallowness-approximation 4
via the Lagrange route

spherical geometry : @ - constant Earth radius
/Yy r=a+/7 ( Z -variable )

NP _00_ 04_0f
oA 0@ or o012
shallowness : a>>7

fh

9 =4,@,a+z , G, =4,0,17
d7 =(acospdi,ade,dz)

—> g ~const.

T =%(azcoszgo(/‘t+§2)2+a2(p2+Z'2) , P=9y —%aZCOSZCDQZ

L=T-¢ , D=a’cosep , U=aCos@pl,Vv=a@p,wW:=2

'S




momentum equations

du_ 20+ sinpv =— . b
dt acosg pacose oA
d—V+ 20+ c05¢u——i6—p
dt acosg pa 0o
dw g 1ap
dt p 0Z

continuity equation
lio N 1 (au +8(VCOS¢))) ow _

;dt acosp\ oA op EYs

first law of thermodynamics

do 849 u o6 vaé’ ol7)
= —+wW—=0uU=0

dt ot acosp o aago 01



Comparison with deep equations indicates that the shallowness

approximation , consisting of

- ‘traditional approximation’ ( neglecting the 2€2C0S @ -terms
— Eckart 1960 )

0¢

- ‘shallow - approximation” ( a >>2Z '3, =const. )

UW VW U?+ V2

I I I

: _ 2W - :
In momentum equations, and - In the continuity equation ) ,

- ‘small-curvature approximation’ ( neglecting

Is achieved dynamically consistent as one package with the Lagrangian
approach .



Global Model

Limited Area
Model

Linear Mode Analysis
for understanding dynamics
of the model core




. Linear Mode Analysis

Importance and meaning of a linear mode analysis Is to recognise
essential properties of the compressible non-hydrostatic model
equations and understand simplifications due to filtering.

Why are the full equations important and interesting enough to become
Increasingly standard model equations?

The modes involved are
- Rossby-, or advective mode
Internal gravity (buoyancy)-inertial modes
Acoustic modes
Lamb mode

Literature: Miller, M., 2002 : Atmospheric Waves.

Meteorological Training Course Lecture Series, ECMWF.

Changnon, J. M., P. R. Bannon , 2005 : Wave Response during
Hydrostatic and Geostrophic Adjustment.
Part | : Transient Dynamics. JAS, 62 , May 2005 , 1311-1329.

Thuburn, J., N. Wood, A. Staniforth , Normal modes of deep atmospheres.
2002 a : Spherical geometry. Q.J.R.M.S. 128 , pp. 1771-1792.
2002 b : f - F - plane geometry. Q.J.M.S. 128 , pp. 1793-1806.




2.1 Linear model framework

Compressible , dry, inviscid , unforced , ideal gas,

Linear Model framework ——— Cartesian coordinates , f - plane , invariant in y-direction ,
Linearisation on f - plane about constant basic current
and height-variable basic state temperature with constant
stability.

Introduction of ‘ field variables ‘ in the sense of Eckart 1960
( cf. Gassmann and Herzog 2006 )*

(u WT)tizw/psﬁ(u'W'CpT')t Cp= B

* Gassmann and Herzog : A consistent Time-Split Numerical Scheme
applied to the Nonhydrostatic Compressible Equations.
- accepted to be published in: Monthly Wea.Rev. 2006




+U8i u—fv+a—p:0
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with the definitions
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General case :

nonhydrostatic — g =1

compressible  — C32<OO

&=

{\ Identical structural wave equation for both p and W

1
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variable separation ansatz:
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vertical structural

equation




2.2 VVertical structural solution

with vertical boundary condition : w=0 for z=0 N z
d2yP) d2yW
LVt =0 L tviv =0
Z Z
(p)
Bc;mﬂ“ w!P) =0 BC: =0
dz
>, n°z° .
vy =—7— >0 - vertical wavenumber squared
Ly
T

Ly

—zj—l“sin

Nz
—7
Zy

j w,&m(z):—rsin(j—fzj

J

hm‘2 :Vr? + "% - separation constant in horizontal structural equation
(p) W) _ o
w" =exp(-T'2) W
== 7" h-=0

n

} n=0



2.3 Horizontal structural equation @ e

wave solution

w, (x,t)~sin(kx—m, t)  p.(xt)~cos(kx—c. t)

a>
frequency equation
.
2 2|2 (2 (a1 .2\ 2 h,
[N _g(kU—%)_[k +(f ((U @) )/CSL ) viere
KkL—a%)Z—fz 2 1 N7
' " 4H?

Gossard and Hook , 1975 : Waves in the Atmosphere. p. 112, eq. (23.7)

All possible wave frequencies of the given linear model are contained in the
frequency equation above. They are going to be discussed in the following.



nﬁyd rostatic
- compressible/elastic

o 1 i
ﬂg—af [_sz +(V§+4H2]+ﬁg
p=1
- =

(O_z) ~c2| kZ+v2a 1 4 202 K242+ 1 pairs of internal
n Ja S n 4H2 S n 4H

acoustic mode frequencies

KN?+| v2+ 1 f? pairs of internal gravity
4H mode frequencies

2
(k2+v§+4i|2j+f2 n

Cs 2 =1

C: —> o0




internal gravity modes
1 remain untouched

iy

acoustic mode filtered out due to ¢2 —> oo

p1=0
C52<oo




IC approximation -

= compressible/elastic .

n : 1 internal gravity modes

n T L with limited validity

- acoustic mode filtered out due to hydrostatic

approximation k*<<vi+——
- hydrostatic filtering, however, is insufficient to represent H
gravity waves with high-resolving models 2 2
- Motivation for nonhydrostatic modelling! I-x >> I-z




4" Analytical solution-

Nonstationary solutions for linear cases considered above

k(kU —
u(x, z,t) ~ fZE(kU f);)) 7 cos (k x—a t)y!P(z)

v(x,z,t) ~ (I|<(Uf o7 sin (k x—a, t)w'")(z)

p(x,z,1t) ~ cos(kx o t)y'"(z)
g o(x,z,t)  N?
c, 6(z) kU — o,

(
w(x,z,t) ~ sin(kx—a t)y")(z)

cos (k x—a,t)w'")(z) (kU -, )#0

The vertical structural function W,ﬁp)(z) (Wﬁw)(z)) Is sufficient to represent

the vertical structure of the variables u,v, p (w,8)

This finding suggests for a vertical difference approximation the application of
a Charney-Phillips ( CP- ) grid instead of a Lorenz ( L- ) grid!



Thecase | N=0 —— ¥, —exp(—FZ) y, =0

defines the Lamb mode which is a particular solution of the vertical
structural equations with boundary conditions included. Its

frequency Is
Y o’ = (kU —a@,) ~k?c’

Indicating a horizontally propagating acoustic wave evanescent in
vertical direction. For a pure Lamb wave
w=0 and @=0 IS valid.




2.5 Simplified scheme towards filtered equations

: 29
hydrostatic equations full equations anelastic equatio
5u—fv+§E:0 5u—fv+§E:O 5u—fv+gg:0
0 X 0 X 0 X
Dv+fu =0 Dv+fu = Dv+fu =0
—Q+Fp—gz:0 g5w+——HTp—gg:O DW+——HTp-gg=O
0z C, 0 Z C, % Z C, 0
—£5p+-g~4ﬁw+§£=0 —%5p+-§m4ﬁw+§2=0 8 I‘W+§E=O
C 012 0 X Cy 01 0 X 8 0 X
5| 92| N2w=0 5/ 92| N2w=0 5/ 92| N2w=0
cpe cpe C, 0

Oh

Oh

2
ou)_;ov p g
0 X OX OXx°
0 X 0 X
0° 1 , OU
02> 4H? O X

5phzd‘k;gzj>

|

0? 1

62p+f2 ~
ox> N?|oz°

4H

)

with

geostrophic potential vorticity equation

- advective mode only
N’ 0w o'w 1

+ W=
f20x> 0z 4H?




3

Nonhydrostatic model equations

Compressible/elastic

Incompressible/anelastic *

e)
30

Hydrostatic ( pri
equatio

equations with full
physical structure

reduction of equation set due to

e (E—Fjw+ a =0

d_, au
oz 0 X

dt

reduction to hydrostatic equation

full set of prognostic
variables

filter condition:

0° 0° 2
(ﬁxz +822]p—1“ p=F(x,z); vt

boundary value problem constitutes a
diagnostic relation for p

filter condition:
w1
07> 4H?
boundary value problem

constitutes a diagnostic
relation for w

w=G(x,z); vt

Internal acoustic and
gravity waves are com-
pletely contained.

Hydrostatic and geostrophic
adaptation

Internal gravity waves are com-
pletely contained, acoustic waves
are filtered out.

Hydrostatic and geostrophic adaptation

Internal gravity waves are
contained, but insufficiently
presented (L2 >> 12
acoustic waves excluded.
Geostrophic adaptation

Damping/filtering of acoustic waves
due to an appropriate numerical
scheme ( split-explicit ,
semi-implicit-semi-Lagrange )
Models: MM5, LM, WRF-NCAR,

UK-Unified Model, etc. ...
WKT78 , Cullen, Gassmann

Numerical treatment of elliptic pressure
equation is difficult and needs to be done
with care (terrain-following coordinate).
An excellent research model is EULAG
(Grabowski, W.W.,P.K.Smolarkiewicz,
2002,MWR 130, 939-952.)

Most operational global and limited
area models are hydrostatic.

* refinements of anelastic approximation: P.B.Bannon,1996, J.Atm.Sc. 53, No.23, 3618-3628.



The choice of an appropriate vertical coordinate is always to aim at improving
simulations over mountainous terrain

"

Introduction of terrain-following vertical coordinate in meteorological modelling
by Phillips 1957 , Gal-Chen and Somerville 1975 , applying a terrain-following
normalisation with surface pressure ( time-dependent coordinate -> deformable )
or surface-height ( time-independent coordinate -> nondeformable )

- Phillips’ sigma-coordinate -> larger-scale hydrostatic modelling

- Gal-Chen’s coordinate -> small-scale nonhydrostatic modelling

There are problems in computing the pressure gradient term with pressure
coordinate in hydrostatic models in case of steeper mountains which has led to
the introduction of step-terrain orography ( Mesinger 1984, Mesinger et al. 1985,
1988 -> NCEP Regional Eta Model ), which seems however not appropriate in
nonhydrostatic modelling ( Gallus and Klemp 2000 ).

Revival of Z-coordinate as shaved-cell approach in combination with
finite-volume method — a possible breakthrough ?



Revival of Z-coordinate in nonhydrostatic modelling !

/ \ Z-coordinate model

S -tepiopagraphy terrain-following with piecewise constant slopes
in Z- coordinate model coordinate model (shaved-cell approach)

smooth

smooth s

Bonaventura, L. , 2000:

Adcroft, A. etal., 1997:
J. of Comput. Phys. 158, 186-213.

MWR 125, 2293-2315.
( for Ocean Modelling )
Steppeler, J. etal. , 2002:
MWR 130, 2143-2149.
(application in LM)

Gallus, A. W., J. B. Klemp, 2000:
MWR 128 , 1153-1164.

research state ! research state !




3.2 Introduction of a time-independent terrain-
following coordinate 5

Vertical coordinate é’ may be any monotonic function of geometrical height.

This é’ -system Is fixed in physical space, and is hon-orthogonal.

It is of Gal-Chen type.

The lowest coordinate surface of constant é’ coincides with the smooth
model orography.

The lower boundary condition seems easy but should be formulated
carefully and consistent which is actually not simple to be done.

How to transform the basic equations into such a
non-orthogonal ¢ - system?

Method :
Start from the basic equations in covariant vector form n



two different
basis vectors

covariant:
or
T. = —
I ax!

contravariant:

-~

Fig. 6-1. Illustration of the two types of basis vectors in a nonorthogonal coordinate

orthogonality relation: aﬁl - aa’l ~ _
—+UJ[ _ T u'j:

i=5! ot 8)7’ !
]
_éij%aa;i _2);(3 9-28" Q0

Divergence of wind vector:

i .
I
representation. The vector % is perpendicular to the plane #* = constant, whereas 7 is au i

1976).

tangent to the curve along which each coordinate except ¥° is a constant (from Dutton, V 3 \7 = Fil S u Y = : (‘\’ G u ! )
~I g ~ ~I
0 X JG 0X

Literature:

Dutton, J.A. , 1986 : The ceaseless wind. pp. 129-144 , 248-251

Pielke, R.A., 1984 : Mesoscale Meteorological Modeling. pp.102-127
Gal-Chen, T., R.C.J. Somerville , 1975 : On the use of a coordinate
transformation for the solution of the Navier-Stokes equations.

J.Comput.Phys. 17, 209-229

Zdunkowski, W., A.Bott : Dynamics of the Atmosphere. Acoursein 4 ®
Theoretical Meteorology. Cambridge Univ.Press 2003.



e :
3.3 Transformation method & 35

&N further specifications

~.. OX' ox! ~  ox' ox = | OX i 3
ox' ox' " ox' ox! Ve ox’| 11 9%Iex' oz
transformation )
old set X" : X* , x> = X » P Z(X, Y, é/)
new set )—Zl, )?2 : )?3 = X, Y, é/(X, Y, Z) monotonic in z !
.. T : ~; OX°
u', u%, 0 = u, v, & and W:u'a)_Zi

7y
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3.3 Transformatién"fﬁ'-gtgg,.di:_

N vith  p(xy,zt)=p,(2)+p'(xy,2t) , z=z2(xy,¢)

hydrostatic vertical distribution of basic state pressure p, (z) !

and the definition \/_ \/7 X 01z
6 X

= _E >0 (left-handed system!)
We arrive finally at the nonhydrostatic equations in the ¢ - system

assuming a dry-adiabatic, unforced, inviscid model atmosphere, here

for the sake of simplicity,ina X, ¥,& - system .

A peculiarity of most models is to use a prognostic variable in the vertical
momentum equation which is not the contravariant vertical wind component

¢ but the common covariant variable W=2 instead .

Havmg d 1 0 Yy 9, 0 0 0 0

=—+ +V—t+W—=—+1U
dt ot ox oy 0z Ot OX

0

Y|,

+§—§

4

(afu 5@v+a£§') [

V=

<

1
N

oy  0¢

flux-form very important
for model implementation!



_ 3.'4"'"'?ransfoﬁﬁﬁﬁﬁif-e'i@' |

du 1 62\ op'
— == + + fv
dt ax\ JG 8x|, 8¢
dv 1 az\ op'
= —fu
dt ay\ fay\ Vs
dw 1 1 op ngL I’ LL’]
,0\/754’ p T Tp
dp' Cpa
—gpW=——"pV.V
dt )2 Cvdp
dT p _
=— Vv , =R, pT
dt C.p P=hy P

relation between contravariant
and physical vertical motion

Mind the pressure gradient terms !

Nonhydrostatic equations
written with generalised
terrain-following £ - coordinate

Further introduction of spherical
coordinates - with shallowness-
approximation - leads to the dynamical
core equations of the Lokal-Modell (LM)




. has an important practical implication. It should be formulated as
consistent as possible within a given numerical scheme, where the scheme

IS also necessary to be adapted to this problem. A successful approach
has been developed by Almut Gassmann*.

At terrain-following lower boundary (LB) = free-slip condition :

1 uaz +Vaz - l A 1 8z+ 0z
=  — _— 4 — B
Je | "ax  ox @ TR

LB

*Gassmann, A. , 2004 : Formulation of the LM’s Dynamical Lower Boundary Condition. n
COSMO-Newsletter No.4, Febr. 2004, 155-158. (www.cosmo-model.org)

Gassmann, A. , H.-J. Herzog , 2006 : A consistent time-split numerical scheme applied to the
nonhydrostatic compressible equations. MWR, accepted to be published.



—ower boundary condition

a;LB_O ow) _ 1 (oudz ovaoz
fy ot ), G\ otéx otox ),

oW 1 1 0p" gp,(T" T, p
elimination of (%JLB by use of E:_;«/E%“Jr pO(T —_If’ ) + 1,

:

8_p:p\/6 07 au+8z 8v+gp0T0 PP 9o, T _f
0¢ ox ot oyot pT p, p T

W ey




3.6 Upper boundary condition @41

Non-penetrative boundary conditionat ¢ =0

£Y _igid lid > [C=W=0] (flat)

0
- no mass flux across the boundary - %(U,V,T ; ---)=0

Danger of wave reflection without additional absorbing remedies !
—> Sponge technique ( philosophy of Davies + Kallberg 1976, 1983 )

~, pN .
Radiative upper boundary condition P = e

It is possible to be implemented in a nonlinear nonhydrostatic
model (LM) for real-data integrations, although resting on limited
assumptions ( linear, hydrostatic, incompressible 2

Klemp, Durran 1983, and also Bougeault 1983 )

&N demonstrated in Almut Gassmann’s lecture



-

\
apf S—Z Fu +aa—z Fv + B
Neumann boundary _ /G | 2X y
condiionat ¢, —> | ac © ¥ (2g Y
1+ — | +| —
0 X oy) )
3 2
1{@2} g (0202 0zg 1 (azJ FV_(azazJ o,
2 oy a A ov OX oxoy) " oy
i ‘ 2 ot y 2 2
ot 1. 92] L[ 22 A éu] +(82J
OX 0y 0 X oy
T Fu=fu+fV—lap ’ |
p OX B— gpoTop_g,OoT_f
relevant for g oT o T W
implementation F=f-f _i@p 0
p oy




4, Some reflections — all the problems are already thought over @ 49

V.BJERKNES , who was the first advocat of NWP, wrote 1904 :

“ If it Is true, as every scientist believes, that subsequent atmospheric states
develop from the preceding ones to physical law, then it is apparent that the
sufficient and necessary conditions for rational solution of forecasting
problems are the following:

... A sufficiently accurate knowledge of the laws according to which one
state of the atmosphere develops from another . . . The problem is of huge
dimensions. Its solution can only be the result of a long development . . .’

1998, when A. ARAKAWA retired , he has reflected Bjerknes® famous

note such : “ I will not be able to see the completion of the ‘great challenge’,
but | am happy to see at least its beginning .’

Where we are now ?



. e TS =
5. Outlook i e

“Outline of main points :

» Increasing tendency towards unified global non-hydrostatic models
Tendency towards global gridpoint models
Introduction of quasi-homogeneous, quasi-isotropic grids
( geodesic grid : icosahedron = polyhedron )

=  New formulation principles in view of a Vortex-Energy Theory
( Nambu-bracket theory) from P. Nevir ( 1993, 1998 ) = opens the way
for the construction of new spatial difference schemes generalising
the classic ideas from Arakawa for the Jacobian operator up to the
general adiabatic nonhydrostatic compressible equations connecting
both global and local accuracy . Recent suggestions for such new
difference constructions have been made by R.Salmon (2005).

Literature:
Heikes,R., D.A.Randall,1995: MWR 123,1881-1887.
Majewski,D. et al.,2002: MWR 130,319-338.
Salmon, R.,2005: Nonlinearity 18,R1-R16.
Nevir,P.,R.Blender,1993:J.Physics A 26,L.1189-1.1193.
Nevir,P. 1998: Habilitationsschrift, FU Berlin,317p.
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=V p-pV¢-20xp¥ [~ o~ (o~ = (o= =
Pdt Pp—pVe X P e {v,h,H}+{v,M,H}+{V,3’H}
dp " 0 .
ar PV £ - M, H
dt P =»| 5t {,0 }
dT Po o d(ps) - ~
FTE = s,S,H
7 at Vv ! ot v }
Entropy S =_” dr(ps) —— s=c,Ing
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Mass V=(lfdep ANanb et s
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for your attention and
your patience that
you followed

Cartoon of Norman Phillips, from: Dynamic Meteorology (ed. P.Morel) 1973



	
	

