
B Reverted bubble test

Aim of this section is to show that when Boussinesq approximation is applicable, reverted
bubble test should give the same results as direct test.

Dynamical equations describing irrotational adiabatic frictionless atmosphere com-
posed of perfect gas are usually written in the form:

dv

dt
= −

RT

p
∇p−∇φ (33)

dp

dt
= −κp∇ · v (34)

dT

dt
= −(κ − 1)T ∇ · v (35)

φ ≡ gz κ ≡
cp

cv

Standard notations are used: v is 3D velocity with components (u, v, w), p is pressure,
T is thermodynamical temperature, φ is geopotential, g is gravity acceleration, R is gas
constant of dry air, cp and cv are specific heats of dry air at constant pressure and at
constant volume.

Equations (33)–(35) can be rewritten into more suitable form using non-dimensional
Exner function Π and potential temperature θ:

dv

dt
= −cpθ∇Π−∇φ (36)

dΠ

dt
= −(κ − 1)Π∇ · v (37)

dθ

dt
= 0 (38)

Π ≡

(
p

p00

)κ

θ ≡ T

(
p00

p

)κ

κ ≡
R

cp
p00 ≡ 1000 hPa

Quantities Π and θ can be decomposed into background values and perturbations:

Π = Π0 +Π′ θ = θ0 + θ′ (39)

Background state is chosen resting, hydrostatically balanced and neutrally stratified
(isoentropic). This gives:

Π0(z) = Π0(0)−
gz

cpθ0
θ0 = const (40)

Inserting (39) and (40) into system (36)–(38) with restriction to xz plane leads to:
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It should be mentioned here that equations (41)–(44) still describe the full 2D
system, i.e. no simplifications were used during their derivation. At this point Boussinesq
approximation can be introduced. It is based on two basic assumptions:

1. Perturbation θ′ is small compared to θ0 and can be neglected in equations (41),

(42) except from buoyant term g
θ′

θ0
.

2. Flow is close to incompressible. This requires two things: fluid velocity much
smaller than speed of sound and vertical scale of motion small compared to density
scale height.

Both these assumptions were fulfilled in bubble tests described in section 3, so the use of
Boussinesq approximation should be justified. When it is applied to system (41)–(44),
it becomes:
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System (45)–(48) has interesting symmetry, responsible for identical behaviour of
direct and reverted bubble test. It can be revealed using vertical mirroring operator Mz

defined as:
(Mzf)(x, z, t) ≡ f(x,H − z, t)

Function f must be defined for z ∈ [0, H]. It can be shown easily that operator Mz is
linear and has following properties:

Mz∂t = ∂tMz

Mz∂x = ∂xMz

Mz∂z = −∂zMz

Mz(f · g) = Mzf ·Mzg

Using these properties it can be verified immediately that system (45)–(48) is invariant
with respect to transformation:
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This means that when fields u,w,Π′, θ′ are solution of the system (45)–(48), their vertical
mirroring with change of sign for w and θ′ produces another solution.

Remark:

For experiments described in section 3 initial state was resting (u = 0, w = 0) and
vertically balanced. If it was horizontally balanced, initial perturbation Π′ would be
zero. Neverthless, Π′ was very small initially, so the only quantity which was actually
mirrored when preparing initial state for reverted test was perturbation θ′. This small
inconsistency might be the reason why there is a slight difference visible when comparing
figures 10 and 14. Another possible explanation is that this difference was caused by
non-Boussinesq effects allowed by model dynamics.
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