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ABSTRACT

The rise of an isolated dry thermal bubble in a quiescent unstratified environment is a prototypical natural
convective flow. This study considers the rise of an isolated dry thermal bubble of ellipsoidal shape (elliptical
in both horizontal and vertical cross sections). The azimuthal asymmetry of the bubble allows the vorticity tilting
mechanism to operate without an environmental wind. The dry Boussinesq equations of motion are solved
analytically as a Taylor series in time for the early time behavior of the bubble (involving derivatives of up to
the third order in time). The analytic results are supplemented with numerical simulations to examine the longer-
time behavior. The first nonzero term in the Taylor expansion for the vertical vorticity is a third-order term, and
appears as a four-leaf clover pattern with lobes of alternating sign. The horizontal flow associated with this
vorticity pattern first appears as a sheared stagnation point-type flow, but eventually organizes into vertical
vortices that fill the bubble. The vortices induce large structural changes to the bubble and eventually reverse
the sense of the azimuthal asymmetry.

1. Introduction and background

Natural (free) convective flows abound in nature and
technology. Examples include flows induced by lit cig-
arettes, computer CPUs, electronic circuitry, radiator
fins, charcoal grills, and the heated ground. The structure
of the convective atmospheric boundary layer is depen-
dent, in part, on the statistical structure of individual
and mutually interacting convective elements, and on
the interactions between convective elements and the
environmental wind. Many of these and other natural
convective flows are azimuthally asymmetric. However,
because even the most idealized natural convective en-
tities are intrinsically nonlinear (fluid inertia and the
coupling between dynamical and thermodynamical var-
iables are essential aspects of the problem), they have
been difficult to analyze theoretically without consid-
ering their ensemble characteristics to be axisymmetric
or slab-symmetric. The present study is one of the first
to focus on the impact of asymmetrical geometry (el-
lipticity in both horizontal and vertical cross sections)
on the behavior of an isolated thermal bubble. The az-
imuthal ellipticity allows the vorticity tilting mechanism
to operate even in the absence of wind shear. The sub-
sequent development of vertical vortices and associated
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structural changes to the bubble are the main features
of interest in this investigation. It should be kept in mind
that much of the current impetus for thermal convection
research is the need for quantitative measures of en-
trainment in thermals and convective clouds, processes
in which vorticity and vortices play a primary role
(Turner 1986; Morton 1997a). Although our study does
not focus on entrainment per se, the ideas presented
herein may prove useful in improving theories of en-
trainment.

Early conceptual models of natural atmospheric con-
vection focussed on plumes, which are spatially contin-
uous buoyant regions arising from a maintained point
or line source of buoyancy, and on thermals, which are
discrete buoyant elements confined to a finite volume
that arise from an impulsive source of buoyancy (Eman-
uel 1994). The notion that these simple convective el-
ements arose from point or line singularities (or from
virtual singularities) simplified laboratory analyses and
led to the early development of simple but extremely
powerful similarity theories.

The classical conceptual model for the plume de-
scribes a steady state flow that laterally entrains ambient
fluid as it ascends. Entrainment has been an important
part of most theories of atmospheric convection since
Stommel (1947) observed that Caribbean cloud tem-
peratures were very close to environmental temperatures
and concluded that the isolated parcel theory of con-
vection was not entirely correct. Stommel postulated the
idea of continuous lateral entrainment to explain these
observations (Stommel 1947, 1951; Houze 1993). En-
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trainment in clouds other than trade cumuli was first
documented by Byers and Braham (1949).

The advancing plume is typically considered to be
conical in shape and can be laminar or turbulent. For
example, rising smoke from a cigarette is often laminar
up to a threshold height at which the Reynolds number
becomes large enough that the plume becomes turbulent
(Scorer and Ludlum 1953). Beginning in the 1950s,
theoretical studies of natural convection used similarity
models (justified by dimensional analysis) to describe
the dynamical structure of laminar and turbulent plumes
(Yih 1951, 1977; Rouse et al. 1952; Batchelor 1954;
Morton et al. 1956; Turner 1962, 1963a,b, 1969; Yih
and Wu 1981). Laboratory experiments were undertaken
to confirm these analyses and to obtain numerical values
of coefficients that could not be estimated from the the-
ories (e.g., Yih 1951; Rouse et al. 1952; Morton et al.
1956; Turner 1986). However, a wide range of these
values has been measured, and universal constants are
still lacking (Morton 1997a). Numerical simulations of
maintained sources of buoyancy were performed by Lil-
ly (1962, 1964) for a line source, and by Ogura (1962)
for an axisymmetric source.

The phenomenon of plume merger from multiple
buoyancy sources was illustrated by Rouse et al. (1953),
Briggs (1975), and others. Plumes in close proximity to
one another will entrain each other and, at some height
above the source, behave as a single plume located mid-
way between the sources. This was also found to be the
case for numerically simulated thermals (Wilkens et al.
1976). Morton (1997b) describes a laboratory experi-
ment in which a two-dimensional linelike thermal
breaks down into a line of pointlike thermals that merge
together as they move vertically through the tank. Con-
vective cloud mergers have been investigated numeri-
cally by Tao and Simpson (1989), Shapiro and Kogan
(1994), and Kogan and Shapiro (1996). These studies
suggest that the dynamics of convective cloud mergers
may be more complex than that of dry convective merg-
ers. The Shapiro and Kogan (1994) study was note-
worthy in that it showed the production of vertical vor-
tices on the periphery of three merging axisymmetric
convective clouds in a shear-free environment. The
viewpoint that those multiple individually axisymmetric
elements can be conceptualized as a single asymmetric
element partially motivated the present work, although
the dry single-bubble framework of the present study
is simpler and permits a more rigorous analysis than
was possible in the three-cloud scenario.

Scorer and Ludlum (1953) proposed a bubble theory
of cumulus development in which convection was con-
sidered as a series of successive bubbles. As the first
bubble rises, it mixes with the environmental air and
leaves behind a wake composed of both bubble and
environmental air. This wake constitutes a preferred re-
gion for the ascent of succeeding bubbles because the
bubble–environmental air mix is less effective in dilut-
ing new bubbles than pure environmental air. Central

to this theory is the notion that bubbles are eroded by
the environment (entrainment). Ludlam (1958) also sug-
gested that an individual thermal could grow continu-
ously in size by entrainment. The bubble theory of con-
vection may be considered an extension of the classical
parcel theory to include the interaction of the bubble
with its environment (Levine 1959; Ogura 1963).

Further development of the bubble theory of convec-
tion was presented by Levine (1959) and Turner (1963b),
who suggested that the rising thermal is characterized by
a spheroidal vortex or azimuthal vortex ring, and applied
Hill’s spherical vortex solution (Lamb 1945). Laboratory
experiments by Scorer (1957), Turner (1957), and Wood-
ward (1959) also exhibited this azimuthal vortical struc-
ture. Morton (1997a) states that vorticity plays a crucial
role in entrainment, and that thermals and spheroidal vor-
tices differ not in the existence of mean azimuthal vor-
ticity but in its distribution.

The structure of thermals and plumes in a stably strat-
ified environment have been considered by Morton et
al. (1956), Richards (1961), Turner (1963b), and others.
Successive thermals rising through nonrotating (Wilk-
ens et al. 1972) and rotating environments were studied
experimentally (Wilkens et al. 1971a) and numerically
(Wilkens et al. 1971b).

More recently, the evolution of thermals started from
rest were studied experimentally and numerically by
Sánchez et al. (1989) in stratified and nonstratified en-
vironments. That study focussed on the early transient
(laminar) stage of the flow, prior to the development of
turbulence and self-similarity. The pre-self-similar ther-
mal had a lower entrainment rate than that of a self-
similar thermal. Interfacial instabilities on moist ther-
mals started from rest were investigated numerically by
Grabowski and Clark (1991, 1993a,b). Their analyses
suggested that turbulent entrainment in cumulus clouds
was largely due to shear-induced instabilities at the
cloud–environment interface, with the shear arising
from an inviscid baroclinic process. Experiments with
moist thermals rising in sheared and unsheared envi-
ronments suggested that the dynamics of the interface
was only slightly affected by environmental shear for
typical atmospheric values of the shear rate. The inter-
face instability process was affected mostly by the buoy-
ancy and velocity fields in the immediate vicinity of the
interface, not by the larger-scale (environmental) vari-
ations in the flow. However, gross features of the thermal
such as the orientation of the mushroom-shaped ‘‘cap’’
were affected by the shear.

This study is concerned with the early transient (lam-
inar) behavior of ellipsoidal thermal bubbles in an un-
stratified quiescent environment. We assume the spatial
scales of the flow are small enough that the Coriolis
force can safely be neglected, and that density variations
are small enough that the Boussinesq approximation is
valid. For simplicity we also neglect diffusion. Although
our results will show that inviscid dynamics are suffi-
cient to produce vertical vorticity (and vortices) in the
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bubble, we should bear in mind that diffusion would
likely become important as the temperature and velocity
gradients near the leading edge of the rising bubble (and
on the sides of the bubble as the vortices develop) in-
crease in magnitude. We speculate that the process of
vortex generation described herein would still occur in
a viscous fluid but that the details of the flow (e.g.,
intensity and scale of the vortices) would likely be mod-
ified.

In the next section we introduce the governing equa-
tions for dry Boussinesq inviscid convective flow, and
consider a perturbation analysis (Taylor series expansion
in time) for the evolution of dry convective elements at
early times. In section 3, the perturbation analysis is
applied to a grid of thermal bubbles and to an isolated
thermal bubble. A key result for the isolated bubble is
the prediction for nonzero vertical vorticity to appear
as a third-order effect with a clover-leaf pattern in the
horizontal. The analytic results are complemented with
numerical simulation results in section 4. The numerical
results confirm the early time analytic results and show
that the vertical vorticity is eventually organized into
well defined vortices (and later, subvortices) that evolve
with the growing thermal bubble. A brief summary and
a discussion of future work follow in section 5.

2. Governing equations

a. Equations for dry Boussinesq thermal convection

The rise of ellipsoidal thermal bubbles in an unstrat-
ified atmosphere otherwise at rest is investigated. With
diffusion and the Coriolis force neglected, the dry Bous-
sinesq equations of motion, mass conservation (incom-
pressibility condition), and thermodynamic energy re-
duce to

]u ]P
1 (v · =)u 5 2 , (2.1)

]t ]x

]y ]P
1 (v · =)y 5 2 , (2.2)

]t ]y

]w ]P
1 (v · =)w 5 gaT 2 , (2.3)

]t ]z

]u ]y ]w
1 1 5 0, (2.4)

]x ]y ]z

]T
1 (v · =)T 5 0. (2.5)

]t

Here, x, y, and z are Cartesian coordinates, u, y, and w
are the corresponding velocity components; and v [ ui
1 yj 1 wk is the velocity vector. The perturbation
temperature T is the departure of temperature from a
constant reference value. The perturbation pressure (de-
parture of pressure from a hydrostatic reference state)
divided by a constant reference density is denoted by
P and will be referred to hereafter simply as the per-

turbation pressure. For a perfect gas, the coefficient of
thermal expansion a is the reciprocal of the absolute
temperature. Under the Boussinesq approximation we
treat a as constant.

A diagnostic equation for the pressure is obtained by
taking the divergence of the vector form of the equations
of motion (2.1)–(2.3) and applying the incompressibility
condition (2.4):

]T
2¹ P 5 ga 2 = · [(v · =)v]. (2.6)

]z

Cross differentiating the component equations of mo-
tion (2.1)–(2.3) results in the x, y, and z component
vorticity equations:

]j ]T
1 (v · =)j 2 (v · =)u 5 ga , (2.7a)

]t ]y

]h ]T
1 (v · =)h 2 (v · =)y 5 2ga , (2.7b)

]t ]x

]z
1 (v · =)z 2 (v · =)w 5 0. (2.8)

]t

Here j [ ]w/]y 2 ]y/]z, h [ ]u/]z 2 ]w/]x, and z [
]y/]x 2 ]u/]y, are the x, y, and z components of vor-
ticity, respectively, and v [ j i 1 h j 1 z k is the
vorticity vector. Equations (2.7a) and (2.7b) can be com-
bined as

]vH 1 (v · =)v 2 (v · =)v 5 2gak 3 = T. (2.9)H H H]t

Here, vH [ j i 1 h j is the horizontal vorticity vector,
vH [ ui 1 y j is the horizontal velocity vector, and =H

[ i]/]x 1 j]/]y is the horizontal gradient operator.

b. Taylor series expansion

A useful device for describing the early time behavior
of flows originating from idealized initial conditions is
to decompose the flow variables into a Taylor series in
time. If the initial conditions are simple enough, it may
be possible to obtain the spatially varying expansion
coefficients analytically, at least for low orders of time.
Such a procedure has been used, for example, in Taylor
and Green’s (1937) analysis of the turbulent breakdown
of large eddies, and in Adem’s (1956) study of vortex
motion on a beta plane.

We begin by expanding each dependent variable into
a Taylor series of the form

f(x, y, z, t)
0 1 2 25 f̃ (x, y, z) 1 tf̃ (x, y, z) 1 t f̃ (x, y, z)

3 31 t f̃ (x, y, z) 1 · · · , (2.10)

where
m1 ] f

mf̃ (x, y, z) [ (x, y, z, 0). (2.11)
mm! ]t
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In this approach the zeroth-order variables are the initial
conditions; the first-order variables are the initial rates
of change (initial tendencies); the second-order vari-
ables are, apart from a factor of one-half, the initial rates
of change of the tendencies; and so forth.

Substituting (2.10) into (2.1)–(2.3), (2.5), (2.6), (2.8),
and (2.9), and collecting terms in like-order of time, we
obtain a hierarchy of governing equations. Assuming
the atmosphere is initially at rest, the equations for the
lowest-order variables are as follows.
Equations for zeroth-order variables are

0T̃ 5 T(x, y, z, 0), (2.12a)
0˜]T

2 0˜¹ P 5 ga , (2.12b)
]z

0 0 0 0ṽ 5 ṽ 5 w̃ 5 z̃ 5 0. (2.12c)H H

Equations for first-order variables are
1 0˜ṽ 5 2= P , (2.13a)H H

0˜]P
1 0˜w̃ 5 2 1 gaT , (2.13b)

]z
1 0˜ṽ 5 2gak 3 = T , (2.13c)H H

1 1 1˜ ˜T 5 P 5 z̃ 5 0. (2.13d)

Equations for second-order variables are
2 1 0˜2T 5 2ṽ · =T , (2.14a)

2˜]T
2 2 1 1˜¹ P 5 ga 2 = · [(ṽ · =)ṽ ], (2.14b)

]z
2 2 2 2ṽ 5 ṽ 5 w̃ 5 z̃ 5 0. (2.14c)H H

Equations for third-order variables are
3 1 1 2˜3ṽ 5 2(ṽ · =)ṽ 2 = P , (2.15a)H H H

2˜]P
3 1 1 2˜3w̃ 5 2(ṽ · =)w̃ 2 1 gaT , (2.15b)

]z
3 1 1 1 13ṽ 5 2(ṽ · =)ṽ 1 (ṽ · =)ṽH H H

2˜2 gak 3 = T , (2.15c)H

0˜]P
3 1 1 0˜3z̃ 5 (ṽ · =)w̃ 5 ga(k3 = T ) · =H H H ]z

0˜]P
0˜5 gak · = T 3 = , (2.15d)H H1 2]z

3 3˜ ˜T 5 P 5 0. (2.15e)

c. Discussion

The equations for zeroth-order variables consist of a
specified initial thermal field (2.12a) and an elliptic
equation for the pressure (2.12b). This pressure field is
induced by the buoyancy force and supports the accel-
erations necessitated by mass conservation.

The first-order vertical velocity is forced by the ze-

roth-order buoyancy and the zeroth-order vertical pres-
sure gradient force (2.13b). Since the first-order hori-
zontal flow (2.13a) is equal to the gradient of (minus)
zeroth-order pressure, it is irrotational and thus there is
no first-order vertical vorticity. However, there is first-
order baroclinically generated horizontal vorticity
(2.13c); the horizontal vorticity vectors are tangent to
the isotherms. When the initial thermal field is pre-
scribed as an isolated thermal bubble, these first-order
variables describe the tendency to produce an ‘‘in–up–
out’’ flow we will refer to as the basic meridional cir-
culation.

The equations for second-order variables describe the
thermodynamic response to the first-order basic merid-
ional circulation. The second-order temperature is
forced by the advection of the zeroth-order temperature
by the basic meridional circulation (2.14a). The second-
order pressure field responds to this second-order buoy-
ancy forcing and to the divergence of first-order accel-
eration terms associated with the basic meridional cir-
culation (2.14b).

The third-order horizontal flow responds to the sec-
ond-order pressure gradient force and to the self-ad-
vection of the horizontal component of the basic me-
ridional circulation by the basic meridional circulation
(2.15a). The third-order vertical velocity is forced by
an imbalance between the second-order pressure gra-
dient force, second-order buoyancy, and self-advection
of the first-order vertical velocity (2.15b). The third-
order horizontal vorticity is forced by the second-order
buoyancy distribution (2.15c) and first-order advection,
tilting, and stretching terms.

The most intriguing aspect of the equations for the
third-order variables is the generation of third-order ver-
tical vorticity by tilting of the first-order horizontal vor-
ticity by the first-order vertical velocity field (2.15d), a
nonlinear process involving only the basic meridional
circulation. There is no third-order stretching effect
since the first-order vertical vorticity is zero. Equation
(2.15d) shows that the tilting term is nonzero in regions
where first-order horizontal vorticity vectors cross iso-
lines of first-order vertical velocity. In view of (2.13c),
it can be stated equivalently that tilting occurs when
isolines of zeroth-order buoyancy cross isolines of the
first-order vertical velocity (in the horizontal plane). Us-
ing (2.13b) to eliminate vertical velocity in favor of
pressure results in another expression for tilting [latter
part of (2.15d)]. This latter equation shows that tilting
is associated with a nonhydrostatic zeroth-order pres-
sure gradient; that is, only the nonhydrostatic part of
the zeroth-order pressure gradient contributes to third-
order vertical vorticity generation. The tilting term is
maximized for zeroth-order temperature and vertical
pressure gradient contours that are perpendicular to each
other:

0˜]P
0˜= ⊥ = T . (2.16)H H]z
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We note that although this third-order flow is rotational
(possesses vertical vorticity), we do not know if it is
actually associated with vortices.1

In closing this section we note that since the thermal
bubble immediately causes an adjustment in the velocity
field (creation of a meridional circulation that destroys
the initial state of no motion), such an initially resting
isolated bubble can never actually be realized in the
atmosphere. On the other hand, an initially motionless
bubble with controllable geometrical parameters pro-
vides a particularly clean model for systematically
studying the mechanism of vorticity generation by az-
imuthal asymmetry. We proceed on the assumption that
our idealized model can reproduce the gross features of
the more realistic atmospheric thermal bubbles with
small but nonzero initial velocity fields.

3. Analytical solutions for thermal bubbles

a. An array of thermal bubbles

Consider an infinite three-dimensional grid or
‘‘checkerboard’’ of alternating hot and cold thermal
bubbles specified by

0T̃ 5 A sin(kx) sin(ly) sin(mz), (3.1)

where A is the perturbation temperature amplitude, and
k, l, and m are the disturbance wavenumbers in the x,
y, and z directions, respectively. With the zeroth-order
pressure corresponding to this thermal grid obtained
from (2.12b), we find that

0 2˜]P m
5 gaA sin(kx) sin(ly) sin(mz).

2 2 21 2]z k 1 l 1 m

(3.2)

Thus the zeroth-order temperature and vertical pressure
gradient are proportional to each other. According to
(2.13b) they are also proportional to the first-order ver-
tical velocity field. It follows from (2.13c) that the first-
order horizontal vorticity vector does not cross isolines
of vertical velocity. Thus, the tilting term in (2.15d)
vanishes and there is no third-order generation of ver-
tical vorticity, although we cannot rule out higher-order
vertical vorticity production. The meridional circulation
induced by the array of bubbles inhibits the tilting pro-
cess, at least as a third-order effect.

1 Although vortices are ubiquitous in nature and easily recogniz-
able, there is, at present, no generally accepted precise mathematical
definition of a vortex. Working definitions based on specific kinematic
features (e.g., closed streamlines or local concentrations of vorticity)
are useful in particular contexts but have limited general utility. The
deficiencies of common vortex definitions are discussed in detail by
Lugt (1979). Herein we refer to vortex in the layman’s sense inasmuch
as the pattern to which we refer is eddylike.

b. An isolated ellipsoidal thermal bubble

1) ZEROTH-ORDER THERMODYNAMIC FIELDS

A particularly simple analytical form for an isolated
bubble is given by a perturbation pressure of the form

0 2xP̃ 5 2gaBze , (3.3)

where
2 2 2x y z

x 5 1 1 . (3.4)
2 2 22L 2L 2Lx y z

In view of (3.3) and (3.4), isolines of the zeroth-order
perturbation pressure (and of the vertical derivative of
the zeroth-order perturbation pressure) in any horizontal
plane are ellipses with eccentricity ep 5 (1 2 / )1/22 2L Lx y

(where, without loss of generality, we have taken Ly .
Lx).

Applying (3.3) in (2.12b) and integrating with respect
to z yields the zeroth-order perturbation temperature

2 2 2 2 2L x L y zz z0 2xT̃ 5 B 2 1 1 2 1 1 2 1 e .
2 2 2 2 21 2 1 2 1 2[ ]L L L L Lx x y y z

(3.5)

A sample contour plot of T̃0 on the upper-right quadrant
of the horizontal plane z 5 0 through the center of the
bubble is presented in Fig. 12a. According to (2.13c)
and the fact that the first-order vorticity is purely hor-
izontal, these T̃0 contours are coincident with first-order
vortex lines.

With attention restricted to B , 0, the perturbation
temperature field corresponds to a central warm bubble
surrounded by a slightly cool exterior. The largest tem-
perature perturbation occurs at the origin (0, 0, 0), and
B is related to the peak temperature perturbation by

0T̃ (0, 0, 0)
B 5 2 . (3.6)

2 2 2 21 1 L /L 1 L /Lz x z y

The locus of points T̃0(x, y, z) 5 0 bounding the warm
bubble is the ellipsoid

2 2 2x y z 1 1 1
1 1 5 1 1 . (3.7)

4 4 4 2 2 2L L L L L Lx y z x y z

Thus, in the x–y plane through the bubble center (z 5
0), the warm bubble is bounded by an ellipse of half-
axis lengths (1/ 1 1/ 1 1/ )1/2 and (1/ 12 2 2 2 2 2L L L L L Lx x y z y x

1/ 1 1/ )1/2 in the x and y directions, respectively.2 2L Ly z

The eccentricity of this zero degree perturbation tem-
perature ellipse is ewarm 5 (1 2 / )1/2.4 4L Lx y

The existence of the weak outer moat of cool air
surrounding the central warm bubble is an unavoidable
side effect of this analytic model. However, a compar-
ison of numerical simulations initialized with and with-
out the cool exterior (not shown) indicated that the cool
air had little affect on the main qualitative results of
this study. A numerical simulation (not shown) with the
azimuthally asymmetric version of Klemp and Wilhelm-
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son’s (1978) thermal bubble also yielded qualitatively
similar results. Thus, differences in the specific forms
of the bubbles appear to have little bearing on the main
qualitative results provided the bubble is isolated and
has an ‘‘ellipsoidal-like’’ azimuthal asymmetry.

2) FIRST-ORDER MERIDIONAL CIRCULATION

The first-order velocity field is obtained from (2.13a)
and (2.13b) as

x y
1 2xṽ 5 2gaBz i 1 j e , (3.8)H 2 21 2L Lx y

2 2 2 2L x L yz z1 2xw̃ 5 gaB 2 1 1 2 1 e . (3.9)
2 2 2 21 2 1 2[ ]L L L Lx x y y

The peak updraft speed (which occurs at the origin)
increases as the vertical aspect ratios Lz/Lx and Lz/Ly

increase (narrow bubbles rise faster than wide bubbles),
and asymptotically approaches the value gaT̃0(0, 0, 0)
as Lz → `.

Examining (3.9) we see that the locus of points w̃1(x,
y, z) 5 0 bounding the updraft region is the elliptical
cylinder

2 2x y 1 1
1 5 1 . (3.10)

4 4 2 2L L L Lx y x y

Thus, on any x–y plane, the updraft is an ellipse with
half-axis lengths of (1/ 1 1/ )1/2 and (1/ 1 1/2 2 2 2 2L L L L Lx x y y x

)1/2 in the x and y directions, respectively.2Ly

A comparison of the warm bubble and updraft ellipses
on the plane z 5 0 shows that the updraft ellipse is
smaller (in both x and y directions) than the warm bubble
ellipse. Thus, on the z 5 0 plane, the warm region of
the bubble completely envelopes the updraft as well as
part of the surrounding downdraft. However, as the ver-
tical aspect ratios increase, the updraft occupies a larger
fraction of the warm bubble (with the isoline of zero
vertical velocity approaching the isoline of zero tem-
perature perturbation as Lz → `). Despite the relatively
smaller size of the updraft, the eccentricities of the up-
draft and warm bubble ellipses are the same [eup 5 ewarm

5 (1 2 / )1/2]. It can be readily shown that the ec-4 4L Lx y

centricity of isolines of the perturbation pressure and of
the vertical derivative of the perturbation pressure is
smaller than the eccentricity of the updraft and warm
bubble ellipses: ep/ewarm 5 ep/eup 5 1/(1 1 / )1/2 ,2 2L Lx y

1. It is in this sense that we say the zeroth-order pressure
field (and zeroth-order vertical pressure gradient) is
broader than the zeroth-order temperature and first-order
vertical velocity fields. We will return to this point in
section 4d(4) when we discuss the physical mechanism
of vertical vorticity production.

3) SECOND-ORDER THERMODYNAMIC FIELDS

Applying (3.8), (3.9), and (3.5) in (2.14a), yields the
second-order temperature as,

2 2x y
2 2 2 22xT̃ 5 gaB L z 1 ez 6 61 2L Lx y

2 2gaB 1 1 z
22x1 1 z 1 2 e

2 2 21 2 1 22 L L Lx y z

2gaB 1 1 2
22 L z 1 1z 2 2 21 22 L L Lx y z

2 2x y 1 1
22x3 1 2 2 e . (3.11)

4 4 2 21 2L L L Lx y x y

A closed-form solution of (2.14b) for the second-order
pressure can be obtained by the method of Green’s func-
tions, but its form is cumbersome and is not presented.

4) THIRD-ORDER VORTICITY DISTRIBUTION

Because of the presence of the second-order pressure
in (2.15a) and (2.15b), the analytic form for the third-
order velocity field is complicated and not particularly
illuminating. However, the third-order vorticity com-
ponents (2.15c) and (2.15d) can readily be derived since
they only require knowledge of the first-order velocity
fields and second-order temperature. Our focus now is
on the third-order vertical vorticity. Applying (3.3) and
(3.5) in (2.15d), we obtain the simple form,

22 z x y 1 1
3 2 2 2 2 22xz̃ 5 g a B 1 2 L 2 e . (3.12)z2 2 2 2 21 2 1 23 L L L L Lz x y x y

In the axisymmetric case (Lx 5 Ly), the vertical vorticity
is zero everywhere. In the nonaxisymmetric case (Lx ±
Ly), the vertical vorticity field appears as a four-leaf
clover pattern in the horizontal with lobes of alternating
positive and negative sign. Sample contours of one
‘‘leaf’’ of the 3 pattern in a nonaxisymmetric case canz̃
be seen in Fig. 12c. [Figure 12c actually depicts the
tilting term, but in view of (2.15d), contours of the tilting
term and 3 coincide.]z̃

Primary local extrema in 3 occur at (x9, y9, z9) 5z̃
(6Lx/ , 6Ly/ , 0). Much weaker secondary extre-Ï2 Ï2
ma occur at upper and lower levels of the bubble, at
(x0, y0, z0) 5 (6Lx/ , 6Ly/ , 6 Lz). The peakÏ2 Ï2 Ï2
magnitude of the vertical vorticity [ | 3(x9, y9,3˜ ˜z zmax

z9) | is

21 L 1 1z3 2 2 2z̃ 5 g a B 2 . (3.13)max 2 2) )3e L L L Lx y x y

Using (3.6) to eliminate B in favor of the maximum
temperature perturbation, (3.13) becomes

0 2 2˜1 [T (0, 0, 0)] L 1 1z3 2 2z̃ 5 g a 2 .max 2 2 2 2 2 2 2) )3e (1 1 L /L 1 L /L ) L L L Lz x z y x y x y

(3.14)
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FIG. 1. Third-order domain maximum vertical vorticity (times )2Lz

as a function of horizontal aspect ratio b (5Ly/Lx), for vertical aspect
ratios b 5 100, 1, 0.5, and 0.25.

The magnitude of the maximum vertical vorticity is di-
rectly proportional to the square of the temperature per-
turbation. However, the dependence of the vorticity on
the bubble dimensions is more complicated. For a ther-
mal bubble of fixed vertical thickness (Lz 5 constant),
the maximum vertical vorticity is proportional to

2 2ab|a 2 b |
3z̃ } , (3.15)max 2 2 2(1 1 a 1 b )

where a [ Lz/Lx and b [ Lz/Ly are the vertical aspect
ratios. The vertical vorticity is zero if a 5 b (axisym-
metric bubble) or if a or b are zero. In the latter case
a horizontal length scale becomes infinite and the prob-
lem becomes two-dimensional (slab symmetric).

It can be shown that without further restrictions on
the bubble geometry, there are no local extrema of

in a–b parameter space. However, we can find a3z̃max

local extrema in a restricted sense if we regard b as
fixed and let a vary according to a 5 bb, where b (5a/
b 5 Ly/Lx) is the horizontal aspect ratio. Without further
loss of generality, we take b . 1, so Ly . Lx. The peak
vertical vorticity is then proportional to

4 2b b(b 2 1)
3z̃ } . (3.16)max 2 2 2[1 1 b (1 1 b )]

This relationship is illustrated in Fig. 1. Note that for
slightly azimuthally asymmetric bubbles (b slightly big-
ger than 1) with vertical aspect ratios ranging between
b 5 1 (Lz 5 Ly) and b 5 100 (Lz k Ly)(a range within
which thermals in the planetary boundary layer typically
fall), vertical vorticity generation increases rapidly with
b. The horizontal aspect ratio bmax that maximizes the
vertical vorticity is determined by the condition ] /3z̃max

]b 5 0 as

1/22 1/23 3 1
b 5 3 1 6 3 1 2 1 1 .max 2 2 251 2 1 2 1 2 6[ ]2b 2b b

(3.17)

We consider the limiting cases of (3.17) for b small
and large. For b K 1 (bubble with a very wide profile
in the y–z plane), bmax is approximately

Ï3 1.732
b ø ø , (3.18)max b b

and a ø 1.732. Thus, the horizontal aspect ratio bmax

that maximizes the vorticity is very large (Ly k Lx) and
the bubble profile in the x–z plane is fairly narrow (Lz

5 1.732 Lx). For b k 1 (narrow bubble in the y–z plane),
bmax is approximately

1/2b ø (3 1 2Ï2) ø 2.414,max (3.19)

and so a ø 2.414 b. Thus, the horizontal aspect ratio
bmax that maximizes the vertical vorticity is approxi-
mately 2.414; that is, Ly 5 2.414 Lx.

It is important to remember that our discussion of
bubble shapes that maximize vertical vorticity produc-
tion and use of (3.15)–(3.19) apply to a family of bub-
bles of constant vertical thickness Lz. Separate analyses
are required for different restrictions, for example, for
the family of bubbles of constant volume or constant
horizontal cross-sectional area.

Although the third-order flow is rotational (vertical
vorticity is present), we do not know if actual vortices
are present. By inspection we find that a third-order
horizontal wind field consistent with (3.12) is

21 z x y 1 1
3 2 2 2 2 22xṽ 5 g a B 1 2 i 2 j L 2 e .H z2 2 2 2 21 21 2 1 26 L L L L Lz x y x y

(3.20)

Since u } xe22x and y } 2ye22x, this flow is similar to
classical stagnation point flow (an irrotational flow with
u } x and y } 2y), but with regions of inflow and
outflow that are sheared and jetlike (rotational) due to
the extra factor of e22x. Thus, we are tempted to say
that the third-order flow, although rotational, is not char-
acterized by vortices. The numerical simulations con-
ducted in the next section also suggest that vortex pro-
duction is a higher-than-third-order effect, at least for
the cases considered. However, one should keep in mind
that (3.20) is just the rotational component of the hor-
izontal wind (not the complete horizontal wind), and
we cannot exclude the possibility that for some thermal
bubbles the addition of an irrotational flow component
would manifest a closed vortex circulation.2

2 As a simple example, consider a Rankine vortex with peak tan-
gential wind U embedded in a uniform easterly current 2U. Since
the easterly current masks the vortex (we do not readily perceive the
embedded vortex) we would likely characterize the flow as rotational
but nonvortical. However, superposition of a uniform (irrotational)
westerly current U on this rotational nonvortical flow would undo
the effect of the easterly current and reveal the vortex.
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TABLE 1. Summary of numerical experiment parameters.

CNTRL EXPT1 EXPT2 EXPT3 EXPT4 EXPT5 EXPT6

Geometry
x–y
x–z
y–z

Circle
Circle
Circle

Ellipse
Narrow ellipse
Circle

Ellipse
Narrow ellipse
Narrow ellipse

Ellipse
Narrow ellipse
Wide ellipse

Ellipse
Circle
Wide ellipse

Ellipse
Wide ellipse
Wide ellipse

Ellipse
Wide ellipse
Wide ellipse

Lx (m)
Ly (m)
Lz (m)

64.24
64.24
64.24

26.84
64.24
64.24

20.84
49.88
64.24

20.84
64.24
49.88

26.84
64.24
26.84

20.84
49.88
19.23

20.84
49.88
19.23

a 5 Lz/Lx

b 5 Lz/Ly

b 5 a/b

1.000
1.000
1.000

2.393
1.000
2.393

3.083
0.288
2.393

2.393
0.777
3.083

1.000
0.418
2.393

0.923
0.386
2.393

0.923
0.386
2.393

T(0, 0, 0) (K)
B

1.5
20.5000

1.5
20.1940

1.5
20.1233

1.5
20.2045

1.5
20.6897

1.5
20.7499

3.0
21.4999

FIG. 2. The y–z cross section of perturbation potential temperature for the CNTRL simulation through the center of the bubble (x 5 0 m)
at various times: (a) t 5 72 s, (b) t 5 96 s, (c) t 5 120 s, (d) t 5 144 s, (e) t 5 168 s, (f ) t 5 192 s, and (g) t 5 216 s. Contour interval
is 0.1 K.

4. Numerical simulations

a. Numerical model

The early time analytic theory of the previous sections
is complemented with numerical model simulations.
Our research tool is Kanak’s System for Atmospheric
Simulation (KANSAS), a three-dimensional, nonhydro-
static, compressible, dry convective numerical model
patterned on the work of Chorin (1967). The governing
equations are cast on a Cartesian Arakawa C grid. Ve-
locity and pressure variables are integrated with a sec-
ond-order, quadratic-conserving spatial discretization
technique known as the box scheme (Kurihara and Hol-
loway 1967), and the centered-in-time leapfrog method.
The thermodynamic variable (potential temperature) is
integrated using a sixth-order, flux conservative Crow-
ley scheme (Tremback et al. 1987) with a forward time
step. A monotonic flux corrector (Leonard 1991), a
high-order operator that guarantees monotonicity, is also
used in the potential temperature calculation. A time

filter (Asselin 1972) is applied to the velocity variables
to prevent solution decoupling. To improve computa-
tional efficiency, a time-splitting scheme (Klemp and
Wilhelmson 1978) is used to integrate terms supporting
sound waves with small time steps, and terms supporting
the slower advective process with larger time steps. Lat-
eral boundary conditions are open/radiative (Klemp and
Wilhelmson 1978), whereas, the lower and upper bound-
ary conditions are rigid and free-slip. No explicit phys-
ical or computational diffusion processes are incorpo-
rated. Further details of this numerical model can be
found in Kanak et al. (2000).

b. Experimental design

A substantial computational saving can be obtained
by exploiting the symmetry of the problem. Since there
is no environmental wind, the bubble remains symmetric
about the x and y coordinate axes, and it suffices to
model the flow on any one quadrant (the flow on the
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FIG. 3. Cross sections of perturbation potential temperature for EXPT1 through the center of the bubble at the same times as Fig. 2. (a)–
(f ) The y–z cross sections. (g)–(l) The x–z cross sections. Contour interval is 0.1 K.

full domain can be obtained by appropriate reflections
of the quadrant solution). In the following, we simulate
the flow on the upper right quadrant (x $ 0, y $ 0).

Our single-quadrant simulations employ 77 3 77 3
224 grid points in the x, y, and z directions, respectively,
with a resolution of Dx 5 Dy 5 Dz 5 3 m. The large
time step is set at Dt 5 0.06 s, and the small time step
is set at Dt 5 0.001 45 s. The base state potential tem-
perature is set to 300 K. The model surface pressure is
set to 1000 mb.

The initial condition is prescribed by (3.5) but applied
to the perturbation potential temperature rather than to
the perturbation temperature (the difference between
these two variables being very small given the relatively

small size and small vertical displacements of the bub-
ble). The bubble initially is centered at x 5 0 m, y 5
0 m, z 5 189 m. Seven simulations were performed.
The first simulation (CNTRL) was a spherical bubble
control run with Lx 5 Ly 5 Lz 5 64.24 m, and an initial
perturbation potential temperature amplitude of 1.5 K.
Simulations EXPT1–EXPT5 focussed on the sensitivity
of the bubble evolution to variations in horizontal and
vertical aspect ratios. Equation (3.6) was used to de-
termine the coefficient B for each simulation (again,
with perturbation potential temperature used in place of
perturbation temperature). The bubble in the last sim-
ulation, EXPT6, had an initial perturbation amplitude
of 3.0 K—twice that of the bubbles in the other sim-
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FIG. 4. Isosurface of the 0.1-K perturbation potential temperature at t 5 168 s for the (a)
CNTRL and (b) EXPT1 simulations. One quadrant of the domain is depicted.

FIG. 5. Time series of domain maximum vertical velocity (m s21)
for each numerical experiment (time sampling interval is 12 s).

ulations. The simulation parameters are summarized in
Table 1.

c. Control run

Figure 2 displays a vertical cross section (y–z plane)
of the evolving perturbation potential temperature field
for the initially spherical bubble control run (CNTRL).
The fields are shown at 24-s intervals beginning at t 5
72 s. As in previous studies of isolated convection (e.g.,
Woodward 1959), the bubble rises and produces a hor-
izontally convergent inflow beneath the region of max-
imum vertical velocity, and a horizontally divergent out-
flow region near the top of the bubble. This meridional
circulation is associated with strong toroidal (ringlike)
vorticity in the horizontal.

In the absence of explicit physical or computational
diffusion, the peak value of the perturbation potential
temperature should remain at 1.5 K. However, since the
numerical schemes have a small amount of implicit dif-
fusion, the simulated peak value will generally be less
than the theoretical value. The peak value in the control
run stays close to 1.5 K for times up to 120 s, but then
begins to decline as the temperature gradient along the
leading edge of the bubble becomes large. At 120 s the
peak value is 1.47 K. From 144 s until the termination
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FIG. 6. Horizontal cross sections of selected fields at t 5 168 s for (a)–(b) EXPT1, (c)–(d) EXPT3, and (e)–(f ) EXPT4.
(a) Horizontal velocity vectors at z 5 418.5 m. (b) Perturbation potential temperature contours at z 5 418.5 m. Contour
interval is 0.05 K. (c) Horizontal velocity vectors at z 5 388.5 m. (d) Perturbation potential temperature contours at z
5 388.5 m. Contour interval is 0.05 K. (e) Horizontal velocity vectors at z 5 289.5 m. (f ) Perturbation potential
temperature contours at z 5 289.5 m. Contour interval is 0.05 K.
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FIG. 7. Time series of domain maximum vertical vorticity for each
numerical experiment (time sampling interval is 12 s).

FIG. 8. Time series of EXPT1 domain maximum vertical vorticity
compared with the corresponding analytic maximum value (time sam-
pling interval is 1.5 s).

of the simulation at 216 s, the peak value decreases from
1.35 to 0.93 K. A similar decline in peak bubble tem-
perature is found in the ellipsoidal bubble simulations.

The equations for the third-order variables predict
zero third-order vertical vorticity values for the control
run (more generally, no vertical vorticity should ever
be generated for this flow). In agreement with the an-
alytical solution, the control simulation produced no
physically meaningful values of vertical vorticity. How-
ever, weak vertical vorticity values several orders of
magnitude less than in any of the other simulations were
present in the form of gridscale noise (not shown). We
attribute these spurious values to the numerical dis-
cretization errors inherent in the numerical integration
of the equations.

d. Ellipsoidal bubble simulations

1) POTENTIAL TEMPERATURE

As an illustrative example of the common qualitative
behavior of ellipsoidal thermal bubbles, we focus on the
EXPT1 simulation. The initial bubble in this simulation
is wider in the y direction than the x direction by a factor
of almost 2.5 (Ly 5 64.24 m, Lx 5 26.84 m), with a
vertical length scale Lz equal to Ly. Accordingly, we say
that this bubble is narrow in the x–z plane, and circular
in the y–z plane. The evolution of the potential tem-
perature field in a y–z cross section through the bubble
center (x 5 0) is shown in Figs. 3a–f and in an x–z
cross section through the bubble center (y 5 0) in Figs.
3g–l. A comparison of Figs. 3a–f (EXPT1) with Figs.
2a–f (CNTRL), shows that the EXPT1 thermal rises
faster and develops its characteristic ‘‘mushroom
shape’’ sooner than in the CNTRL run. In general, the

narrower bubbles (EXPT1–EXPT3) rise more rapidly
than the wider bubbles (EXPT4, EXPT5), a result con-
sistent with the discussion of the first-order vertical ve-
locity field in section 3b(2) and the results of previous
studies (e.g., the appendix of Das 1979). (EXPT3 is a
special case where the initial bubble is narrow in the
x–z plane and wide in the y–z plane, and exhibits be-
havior that is intermediate to the other simulations.)

Figures 2 and 3 also reveal that although both bubbles
have the same initial radius in the y direction, the sub-
sequent expansion of the EXPT1 bubble in the y direc-
tion is significantly inhibited compared to the expansion
of the CNTRL bubble. The expansion of the EXPT1
bubble in the y direction is also stunted compared to its
growth in the x direction. These features are particularly
evident in the three-dimensional view of the 0.1-K per-
turbation potential temperature isosurface at t 5 168 s
(Fig. 4). Interestingly, the isosurface for the EXPT1
simulation (Fig. 4b) reveals that the bubble ellipticity
reverses with height: at low levels the bubble is elon-
gated in the y direction (as in the initial condition), but
at upper levels (e.g., in the cap) the bubble is elongated
in the x direction. This reversal of eccentricity is as-
sociated with a sharp indention of the 0.1-K isosurface.
As we will see, this unusual structure is associated with
vertical vortices induced by the azimuthal asymmetry
of the thermal field.

2) MAXIMUM UPDRAFT SPEEDS

The time series of the domain maximum vertical ve-
locity for each simulation is shown in Fig. 5. The
CNTRL updraft speed is in the middle of the simulation
range, with narrower bubbles (EXPT1–EXPT3) having
greater vertical velocities than the wider bubbles
(EXPT4 and EXPT5). This ordering of the magnitudes
of the peak vertical velocities is consistent with the first-
order theory of section 3b(2) throughout the simulation
period (although the first-order theory is strictly valid
only for the early stages of the simulation, where w
varies linearly with time).

3) VERTICAL VORTICITY AND VERTICAL VORTICES

The most intriguing aspect of these results is the for-
mation of vertical vortices in the ellipsoidal bubble runs.
Examples of vortices from three simulations at a com-
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FIG. 9. Horizontal cross sections of horizontal velocity vectors for EXPT1 at (a) t 5 96 s and z 5 310.5
m, and (b) t 5 180 s and z 5 430.5 m.

FIG. 10. Horizontal cross sections for EXPT4 at t 5 180 s and z 5 292.5 m. (a) Horizontal velocity
vectors and (b) perturbation potential temperature. Contour interval is 0.05 K.

mon time, t 5 168 s, are presented in Fig. 6. Figures
6a–b depict the horizontal velocity vectors and pertur-
bation potential temperature contours in the x–y plane
at the height z 5 418.5 m for EXPT1. Figures 6c–d
depict the same fields, but for EXPT3 at z 5 388.5 m.
Figures 6d–e depict the same fields, but for EXPT4 at
z 5 289.5 m. These heights were chosen because they
contained the most pronounced vertical vortices. These
heights are also within a few levels of the domain max-
imum vertical vorticity values.

In these and in the other simulations, the sense of the
vortex circulations is such that the advection of the tem-
perature field reduces (and eventually reverses) the sense
of the thermal bubble eccentricity. The potential tem-
perature perturbation fields shown in Figs. 6b,d, and f,
all reflect the reversed or reduced eccentricity of the ther-
mal field associated with the vortices. These figures (es-

pecially Fig. 6d) also show a pronounced ‘‘wrapping up’’
of the perturbation temperature contours.

A time series of the domain maximum vertical vor-
ticity for each simulation is shown in Fig. 7. The open
circles on each curve correspond to the approximate
(subjectively determined) time at which a vortex cir-
culation was first evident in the simulation. According
to (3.14), the wide bubbles should have the greatest
values of vertical vorticity, and the narrow bubbles
should have the lowest values. The results depicted in
Fig. 7 are consistent with this prediction. The devel-
opment of a mushroom-shaped cap in the perturbation
temperature field, the vortex formation, and the sub-
sequent wrapping up of the perturbation temperature
contours occurred somewhat earlier in the narrower bub-
ble simulations than in the wider bubble simulations,
even though the wider bubbles eventually developed
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FIG. 11. Vertical cross section of selected fields for EXPT1 at t 5 168 s and y 5 25.5 m. (a) Vertical
vorticity. Contour interval is 0.02 s21. (b) Vertical velocity. Contour interval is 0.3 m s21. (c) Perturbation
potential temperature. Contour interval is 0.09 K. (d) Perturbation pressure. Contour interval is 0.5 Pa.

greater values of vertical vorticity. Note that EXPT6
(which has twice the initial thermal perturbation am-
plitude of the other simulations) has maximum vertical
vorticity values much larger than in all the other sim-
ulations.

In Fig. 8 the theoretical value of maximum third-order
vertical vorticity (3.14) (multiplied by t3) is compared
to the simulated maximum value in the EXPT1 run. The
predicted solution agrees well with the simulated do-
main maximum vertical vorticity for early times (when
the theory is valid). Similarly good agreements with the
theoretical curves were obtained for all other simula-
tions, although the curves tended to diverge earlier for
the bubbles with the greatest vertical velocities.

Horizontal wind vectors for EXPT1 are shown in Fig.
9 for two times, t 5 96 s and t 5 180 s, at the heights
z 5 310.5 and 430.5 m, respectively. Although vorticity
is present at t 5 96 s, a vortex does not form until t .
120 s. The flow represented in Fig. 9a is qualitatively
similar to the analytical solution for the rotational part
of the wind (3.20) in that it resembles a stagnation point-
type flow, at least for y , 50 m. At t 5 180 s (Fig. 9b),
a vortex is well established. A small counterrotating sub-
vortex near the bubble center is also evident at this time.

The wrapping up of the thermal field is particularly
evident in the wide bubble of EXPT4, which appears
to be in the process of splitting at t 5 180 s (Fig. 10).
Since each panel represents a single quadrant, the full
bubble appearance after such a split would be a central
cell and two lateral cells on either side in the x direction.
Such a result might be counterintuitive (the initial bub-
ble geometry is elongated along the y direction) until

one considers the sense of the vortex circulations. How-
ever, after t 5 180 s the bubble geometry becomes in-
creasingly complicated and noisy, and the grid resolu-
tion may become inadequate. Accordingly, we postpone
further comments on this possible splitting behavior un-
til a later study, when we plan to conduct higher-reso-
lution and larger domain tests.

The vertical structure (x–z cross section), taken
through the center of the primary EXPT1 vortex at t 5
168 s is shown in Fig. 11. The vertical vorticity asso-
ciated with this vortex is shaped like a canopy (Fig.
11a) overlying a narrow and vertically extensive core
of weak vorticity of opposite sense, which is eventually
associated with the small inner subvortex depicted in
Fig. 9b. The vertical velocity field (Fig. 11b) shows that
the primary vortex resides largely within rising motion.
The perturbation pressure (Fig. 11d) shows that the vor-
tex is associated with low pressure, as expected.

4) MECHANISM OF VERTICAL VORTICITY

PRODUCTION

As discussed in section 2c, the lowest-order (third-
order) vertical vorticity is produced by the tilting of the
first-order horizontal vorticity into the vertical by the
first-order vertical velocity. This is an interaction be-
tween two features that characterize the basic meridional
circulation: the convective updraft and the baroclinically
generated toroidal (ring) vorticity. We saw that this tilt-
ing process had several equivalent descriptions involv-
ing, for example, the cross product between horizontal
gradients of first-order vertical velocity and zeroth-order
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FIG. 12. Horizontal cross sections of analytic fields through center
of bubble (z 5 0) determined with EXPT1 input parameters. (a)
Zeroth-order perturbation potential temperature from (3.5). Contour
interval is 0.1 K. (b) Vertical derivative of zeroth-order perturbation
pressure (divided by density) from (3.3). Contour interval is 0.003
m2 s22. Field scaled by 1.0 3 105. (c) Third-order vertical vorticity
from (3.12). Contour interval is 1.0 3 1027 s24. Field scaled by 1.0
3 1010.

FIG. 13. Schematic diagram illustrating the generation of vertical
vorticity in ellipsoidal thermal bubbles. See text for details.

temperature, and the cross product between horizontal
gradients of the zeroth-order vertical perturbation pres-
sure gradient and zeroth-order temperature. However,
as we will now see, the skewness (crossing angle) be-
tween the first-order vertical velocity and zeroth-order
temperature isolines can be very small.

Making use of (2.13b) and (3.3)–(3.5), we find that
the ratio of the buoyancy force to the vertical pressure
gradient force at the center of the ellipsoidal bubble is

2 2˜)gaT(0, 0, 0)) L Lz z) ) 5 1 1 1 . (4.1)
0 2 2˜) )]P L Lx y) )(0, 0, 0)

) )]z

Hence, if the bubble is ‘‘narrow’’ (one or both of the
vertical aspect ratios is greater than one), then the first-
order vertical velocity field is dominated by the buoy-
ancy force rather than by the vertical pressure gradient
force. Since the vertical velocity field is then mostly
proportional to the temperature field, the crossing angle
between isolines of vertical velocity and temperature is
very small. Consistent with this result, we found that
the skewness between isolines of the vertical velocity
and potential temperature fields in the region of the
maximum tilting were almost imperceptible during the
early part of the EXPT1 bubble simulation (not shown).
On the other hand, isolines of vertical perturbation pres-
sure gradient and perturbation temperature were much
more skewed with respect to each other. Depicted in
Fig. 12 are horizontal cross sections through the center
of the bubble of three fields determined analytically with
EXPT1 input parameters: the zeroth-order perturbation
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temperature T̃0, the vertical derivative of the zeroth-
order perturbation pressure ] 0/]z, and the tilting termP̃
( · =)w̃1. [We remind the reader that contours of T̃01ṽH

coincide with first-order vortex lines through (2.13c),
and that contours of the tilting term ( · =)w̃1 coincide1ṽH

with contours of the third-order vertical vorticity 3z̃
through (2.15d).] Consistent with previous studies of
thermal convection (e.g., Das 1979), the positive value
of ] 0/]z indicates that the perturbation pressure gra-P̃
dient force is downward, that is, opposing the buoyancy
force. A large skewness between the T̃0 and ] 0/]zP̃
fields is evident in the region of greatest tilting.

A conceptual model for the early-time generation of
vertical vorticity in an elliptical thermal bubble is sketched
in Fig. 13. The narrow ellipse at the top of the figure
represents an isotherm in the central plane of the bubble.
This narrow ellipse is also a vortex line since the vorticity
is tangent to the temperature contours at early times. This
isotherm is intersected by several broader ellipses repre-
senting isolines of the downward-directed vertical pertur-
bation pressure gradient force. The pressure gradient force
pushes the isotherm/vortex line downward in a broad cen-
tral region, distorting its originally planar orientation. Up-
ward- and downward-directed arrows on this vortex line
indicate regions where positive (or negative) vertical vor-
ticity are now present.

5. Summary and future work

This study is an analytical and numerical investiga-
tion of the early time behavior of a prototypical natural
convective flow, the dry thermal bubble, with a novel
focus on the impact of asymmetrical bubble geometry
(ellipticity in both horizontal and vertical cross sec-
tions). For simplicity, we consider the simplest possible
scenario of a single bubble rising in an unstratified en-
vironment without an ambient wind. Experiments are
performed for several combinations of horizontal and
vertical aspect ratios.

Since the vertical vorticity in this study is initially
zero and there is no environmental wind shear, vertical
vorticity can only arise from the tilting of horizontal
baroclinically generated vorticity into the vertical. The
asymmetrical nature of the bubble allows the tilting pro-
cess to operate. A perturbation analysis (Taylor series
expansion in time) shows that the vertical vorticity first
appears as a third-order effect, in a pattern resembling
a four-leaf clover. The initial production of vertical vor-
ticity by the tilting mechanism has a straightforward
explanation. Since the downward-directed perturbation
pressure gradient force is broader than the narrow per-
turbation temperature field (and associated narrow el-
liptical vortex line), it acts to broadly depress the ellip-
tical vortex line downward in the central part of the
bubble (Fig. 13). The distorted vortex line is then as-
sociated with positive and negative components of ver-
tical vorticity.

The numerical simulations show that the rotational

flow first appears as a sheared stagnation point-type flow
that evolves into four vortices (one primary vortex per
quadrant of the bubble) that fill the bubble. Later in the
simulations, counter-rotating inner subvortices of consid-
erable vertical extent form near the center of the bubble.

The primary vortex circulations wrap up the temperature
contours and also reduce the azimuthal ellipticity of the
bubble temperature field. Eventually the eccentricity re-
verses sense; that is, the bubble becomes elongated in the
direction perpendicular to its original major axis. At even
later stages of some of the simulations, the bubble appears
to be on the verge of splitting, although the grid resolution
may not adequately capture this process.

Further experiments with isolated ellipsoidal bubbles
are planned. We will first revisit the possible splitting
behavior of the bubbles with higher-resolution numer-
ical simulations conducted in a larger domain and for
a longer duration than was originally possible. Longer
duration experiments with diffusion and with random
noise imposed in the initial condition will allow us to
assess the significance of the asymmetry-induced vor-
tices against a more realistic backdrop of interface in-
stability and turbulence. In particular, we can determine
whether asymmetric thermal bubbles eventually become
self-similar like their axisymmetric counterparts. We
will then broaden the experimental framework to in-
clude continuous density stratification, inversions, wind
shear, and latent heat release. We anticipate that when
buoyant air rises or neutral or stable air is forced to rise
in a unidirectionally sheared environment, a pair of pos-
itive and negative vertical vorticity lobes will be gen-
erated by the tilting process (e.g., Rotunno 1981; Wil-
helmson and Klemp 1978). We also anticipate that ver-
tical displacements in a stratified environment will gen-
erate gravity waves that might interact with the thermal.
Latent heat release in moist thermals and evaporation
in compensating downdrafts can accentuate horizontal
temperature gradients that generate horizontal vorticity
baroclinically. The impact of these additional processes
on the asymmetry-induced tilting process and on vortex
evolution will be investigated.
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