

Monitoring HIRLAM with Cabauw data

Cisco de Bruijn, KNMI, De Bilt, NL

Sodankylä 4-14 June 2005

Contents

• HIRLAM

- Cabauw observations
- Quality Control of fluxes
- Monitoring
- Future

$\bullet \bullet \bullet \bullet$

HIRLAM 6.2

•3D VAR analysis ,
•Digital Filter Initialisation ,
•Later Boundaries (6/3h)
•Semi Lagrangian advection 600/300sec,
•Grid 22 and 11 km
•40 levels

Physics schemes

- Radiation (Savijärvi)
- STRACO (Sass et al.)
- •Turbulence CBR (Cuxart et al.)
- •Surface scheme ISBA + surface analysis

Cabauw observations

Quality control of turbulent fluxes

$\bullet \bullet \bullet \bullet$

Koninklijk Nederlands Meteorologisch Instituut

Removal of spikes

- 1. Averaging
- 2. Define thresholds
- 3. Calculate fluxes with an accurate model

Method

Estimation of Surface Radiation and Energy Flux Densities from Single-level weather data *Wim C. de Rooy and A.A.M. Holtslag, JAM 1999*

Input:

Shortwave radiation down Shortwave radiation up Longwave radiation down Temperature 2m Windspeed 10m Relative humidity 2m

<u>Output:</u> Sensible heat flux Latent heat flux Momentum flux

 $\bullet \bullet \bullet \bullet$

^Koninklijk Nederlands Meteorologisch Instituu^t

^Koninklijk Nederlands Meteorologisch Instituut

^Koninklijk Nederlands Meteorologisch Instituut

But...

Works well in Cabauw (grass)
Adaptations for other vegetations and surfaces
Stable conditions are problematic

FMI Monitoring of HIRLAM (Markku Kangas)

Too much mixing to prevent excessive cooling

Istituut

Koninklijk Ne

Future work

- Collect more cases with problems
- Use more observations (surface, higher levels)
- Study longer episodes
- Experiments with 1D/3D version of HIRLAM

- Collect more cases with problems
- Use more observations (surface, higher levels)
- Study longer episodes
- Experiments with 1D/3D version of HIRLAM

Future work

- Collect more cases with problems
- Use more observations (surface, higher levels)
- Study longer episodes
- Experiments with 1D/3D version of HIRLAM

•••Autumn problem (6.3.5a) Sander Tij

Konin

H635_1S40tdew11

H635_1S40tdew7

Thanks for your attention !!

