
Galileo Galilei: We will understand

the movement of the stars long

before we understand canopy

turbulence

Raupach and Thom, 1981:A warning

is necessary about
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searching for scaling schemes using
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subject will probably remain partially

empirical for some time to come.
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Structure of atmospheric BL
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In some parts, we use notations ui = (u, v, w) and
xi = (x, y, z).



Roughness sub-layer cor-
rection
The influence upon the flow of a canopy of height h

is felt throughout a roughness sublayer that extends
considerably above z = h.

At its upper limit, RSL merges with an inertial sublayer
in which the wind profile expressions follow the classi-
cal similarity laws.

The presence of the surface has basically twofold in-
fluences on the mean wind field

• horizontal inhomogeneity; the effects extends up
to about z = h + D, where D is the mean inter-
element spacing

• perturbation on the horizontally averaged mean
wind gradient; the gradient in RSL is less than



in ISL, that is φM < 1 in ISL, attributed to the
wake turbulence by the elements and making the
turbulent transport coefficient KM greater than its
ISL value

For a cylinders in the wind tunnel the region of wake
influence is about h+1.5lt where lt is the transverse-
element length scale.



Rannik et al. (2003) presents expressions for mean
wind in RSL fitted for Hyytiälä pine forest and the as-
sumption that RSL is located at h+ d enabled a good
fit the observed profiles.



However, great care must be taken in applying the
standard micrometeorological relationships in the lay-
ers immediately above vegetation canopies and RSL
is often assumed to extend even two or three times
the canopy height.

The analysis is even more difficult for the transport of
heat and gases since the flow is influenced not only by
wake-diffusion but the spatial distributions of sources
and sinks for heat and gases.

Similarly, to momentum, the temperature and concen-
tration profiles are modified and the transport coeffi-
cent are larger than ISL values.

General features of turbu-
lence in plant canopies
The single-point statistics of turbulence in RSL and in
the space within the canopy (and trunk-space) differ



significantly from those in the rest of the surface layer.
Especially:

• mean wind profile inflected

• second moments inhomogeneous with height

• skewness large

• 2nd moment budgets far from local equilibrium,
that is shear production is not simply equal to vis-
cous dissipation

• large coherent structures; sweeps generated by
counter-rotating vortices

• aerodynamic drag due to form and skin-friction
leads to short-cut in spectra bypassing the iner-
tial eddy-cascade;



• the elements generate turbulent wakes which con-
vert the mean kinetic energy (MKE) into turbulent
kinetic energy (TKE) at length scales of elements

• total dissipation rates large

• most plants wave thereby storing MKE as strain
potential energy, to release it as TKE

Analysis framework
Classically, the turbulent flow is analyzed by means
of time averaging giving rise to the concept of tem-
poral fluctuations due to temporal inhomogeneities in
the flow. In the canopy, the flow is inhomogeneous
also due to spatial variability.



The effects of the canopy do not appear explicitly in
the equations until a horizontal averaging is consid-
ered.

Analogously, we introduce the volume averaging of
the a scalar or vector function φ

〈φj〉(~x, t) =
1

V

∫ ∫ ∫
V

φj(~x + ~r, t)d3r (1)

where the averaging volume V

• excludes solid plant parts

• consists of a horizontal slab extensive enough to
eliminate plant-to-plant variations

• is thin enough to preserve vertical variations



Thus

φj = 〈φj〉+ φ′′j (2)

It is important to note that differentiation and volume
averaging are not commuting (that is the average of



derivative is not the same as the derivative of the av-
erage), if the variable is not constant at air-canopy in-
terface, mathematically

〈
∂φj

∂xi
〉 =

∂〈φj〉
∂xi

−
1

V

∫ ∫
St

φjnidS (3)

where St is the sum of all the solid plant surfaces that
intersect the averaging volume and ni is the unit nor-
mal vector pointing away from St.

Let us consider a simple example of the pressure field
for the flow (x1-axis is along the flow) across a series
of adjacent fences

• ∂p
∂x1

= ∂p′′
∂x1

since ∂〈p〉
∂x1

= 0 (〈p〉 is constant)

• there is naturally pressure differential in the space
between the fences and thus ∂p

∂x1
= ∂p′′

∂x1
6= 0,

and over the several fences thus 〈∂p′′
∂x1

〉 6= 0



• however, ∂〈p′′〉
∂x1

= 0 by definition

• thus the averaging and differentiation do not com-
mute

The resulting first-moment or momentum equation for
adiabatic flow is

∂〈ui〉
∂t

+ 〈uj〉
∂〈ui〉
∂xj

= −
∂p

∂xi
+

∂τij

∂xj
+ fFi + fV i (4)

where

τij = −〈u′iu
′
j〉 − 〈u′′i u′′j 〉+ ν

∂〈ui〉
∂xj

(5)

fFi =
1

V

∫ ∫
St

pnidS (6)

fV i = −
ν

V

∫ ∫
St

∂ui

∂n
dS (7)



The second term of τij describes the dispersive flux
which stems from spatial correlations in the time-averaged
velocity field, that is from spatial correlations of re-
gions of mean updraft or down-draft with regions where
u differs form its spatial mean:

• The dispersive flux is not a truly turbulent flux,
since it could also arise if the flow were laminar.

• The dispersive flux is potentially significant not
only within the canopy, but also in RSL where
constancy of flux with height applies to the sum
〈u′′1u′′3 + u′1u′3〉 and not to the turbulent compo-
nent alone.

• it is not yet known (Raupach and Thom, 1981)
how significant dispersive fluxes may be in real
canopies.



fFi represents the form or pressure drag and fV i the
viscous drag. Together they form the aerodynamic
drag.

The drag converts MKE to TKE in the element wakes,
contributing to the very high turbulence levels inside
canopies.

Eq. 4 can be compared with the classical time aver-
aged equations and one can notice that simple time-
averaged free-air Eqs. are now time and volume av-
eraged.

The similar procedure can be applied to the second
moment equations giving the volume-averaged stress
budget.

The formula is rather complicated, and considerable
simplification is gained by considering only a horizon-
tally homogeneous canopy subject to stationary flow



and with the mean wind vector in the surface layer
aligned with the x axis. The result is

∂〈u′′w′′〉
∂z

+
∂〈u′w′〉

∂z
= −

1

ρ
〈
∂p′′

∂x
〉+ ν〈∇2u′′〉 (8)

Again, the first term represents the dispersive flux.
The right-hand side represents the drag due to the
canopy. In the absence of them, Eq. simply state that
the vertical flux is constant with height.

Similarly for any scalar s

∂〈w′′s′′〉
∂z

+
∂〈w′s′〉

∂z
= Ds〈∇2s′′〉 (9)

where Ds is the molecular diffusivity.

The term on the right can be identified as the specific
creation density, or emission rate per mass of air of



the property s by canopy elements, for example hori-
zontally averaged emission rate of sensible heat, wa-
ter vapor or carbon dioxide.

There is some evidence that u′s′ alone successfully
measures property fluxes in RSL above forest canopies,
suggesting that the dispersive mechanisms are not
significant for scalars.

We can summarize:

• wakes and boundary-layers of individual plant el-
ements appear as spatial correlations

• coherently waving canopies appear as surface in-
tegrals

• volume averaging removes the dependence on
stochastic distribution of foliage but note that rarely,



if ever we measure volume-averaged variables,
since sensors are placed in the open spaces (this
is true also for example with radiation measure-
ments in canopies)

Characteristics of canopy
turbulence
Let us look at canopy wind profiles and the height de-
pendence of turbulence first.



The main features are

• u1(z)
u1(h)

has an inflection point at z = h; within the

canopy the ratio is roughly exponential

• max shear occurs at z = h and high shear in
the upper part; very low to negligible shear in the
lower part; highly sheared layer may exist close
to the ground



• reversal of the wind gradient may occur in the
lower part, resulting in the secondary maximum

• wind profiles are also influenced by prevailing me-
teorological conditions; in the previous Fig. there
is relatively more wind in the light wind conditions,
since free convective activity (data was collected
during sunny days)

• σu and σw are strongly inhomogeneous

• correlation coefficient ruw gives the efficiency of
momentum transport; it is more efficient at canopy
top

• the skewness of u is order of 1 and the skewness
of w is order of -1.



Widely used (although it is just a single-parameter
empirical fit) formula predicting the wind profile well
is

U(z)

U(h)
= exp(α(z/h− 1)) (10)

where α usually lies between 2 and 3.

The following Figs. presents the model calculations
by Markkanen et al. (2003) for wind velocities and
standard deviation of w for different LAI and different
leaf area distributions, shown in the first Fig.







CHANGE IN LECTURE NOTES.

The correlation cuw is typically of the order of -0.35 at
levels above RSL but reaches values as high as -0.6
at the top of tall vegetation, indicating highly organized
nature of the flow.



The next Figs. show typical profiles of skewness and
the skewness and kurtosis determined for a Scots pine
forest in Hyytiälä.
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The next Fig. illustrates the typical (not measured)
pdfs for u and w components.
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It is very important to note that within the canopy no lo-
cal relationship between the flux and the gradient nec-



essarily exists since counter-gradient transport may
occur due to intermittent coherent structures. Con-
ventional diffusion theory may be seriously in error in
the canopy environment.

With sufficient homogeneous upwind fetch, the mo-
mentum flux must be downward since there are no
source of mean momentum anywhere in the canopy;
therefore counter-gradient momentum transport is oc-
curring in regions where ∂u

∂z < 0

The next Fig. illustrates the counter-gradient transport
for scalars.



The underlying reason for this kind of behaviour is
twofold

• turbulence is inherently nonlocal; diffusion equa-
tion can only describe transport if the length scales
of flux-carrying motions are much smaller than
the scales over which average gradients change
appreciably

• multiplicity of length and velocity scales; the dif-
fusivities cannot be determined on dimensional
grounds since the scales are not unique

Coherent eddies
In the canopy, the consistent patterns may occur in
streamwise and vertical two-point space-time correla-
tions.



Within the apparent chaos, there exist large structures
distributed randomly, with finite lifetimes and with length
scales ranging from surface-element scale to the BL
thickness.

The single-point statistics can provide spatial informa-
tion if Taylor’s frozen turbulence hypothesis is valid,
but it is questionable in high-intensity canopy turbu-
lence.

So called conditional analysis or conditional sampling
is based on consideration of four sign combinations
and can provide some structural information

Quadrant 1: u′ > 0; w′ > 0; outward interaction

Quadrant 2: u′ > 0; w′ < 0; sweep

Quadrant 3: u′ < 0; w′ < 0; inward interaction

Quadrant 4: u′ < 0; w′ > 0; ejection



Stress is thus transported downwards by ejections and
sweeps and upwards by two interaction events, so that
the overall stress is naturally downwards.

The major contributor to the momentum transport is
sweep which correspond to the penetration of fast,
downward moving gusts. Sweeps can be individually
very large: 50% of stress is being delivered in less
than 10% of the time, that is they are very intermit-
tent.

The next most important is ejection.

The others are significant only in coherently waving
canopies.

The next Figs. shows the joint probability density func-
tions (pdf) of four quadrants and stress fractions over
a rough surface.





The same features are valid for scalars, for which kind
of ramps and microfronts may occur. Temperature
field exhibits a sloping microfront between warm air
being ejected from the canopy, and cool air being swept
into the canopy.

Pressure perturbations are also closely connected to



coherent structures. The pressure pulse is a conse-
quence of the convergence in the flow field and is a
dominant influence on the air flow lower in the canopy.

CHANGE IN LECTURE NOTES.

Turbulent fine structure
In the canopy, momentum is absorbed from air stream
over an extended vertical region rather than just at the
surface plane. It affects

• aerodynamic drag

• eddy cascade

• spectral shapes



• viscous dissipation

• TKE budget

Aerodynamic drag

The force per unit volume Fi ≡ fFi + fV i can be
parameterised

Fi(~x) = −CD(~x)a(~x)〈ui〉|u| (11)

where |u| =
√
〈ui〉〈ui〉 and a is the local foliage per

unit volume.

CD is a drag coefficient and it depends on the Reynolds
number, which ranges from 100 to 105 from near ground
to upper, well-ventilated part.

Kinematic pressure drag CDF is order of 0.5 when
103 < Re < 105 and order of 1 when Re < 100.



For the viscous drag CDV ∼
√

Re.

CDF is the major component. Note that CD of indi-
vidual elements has been found to be larger by the
factors up to 3 and 4 than that in situ, due to shelter
effect (not completely understood).

Turbulence intensities and spectra

The longitudinal turbulence intensity iu = σu
u is higher

within canopies than above them. iu increases with
canopy density, typically from 0.4 (crops) to 0.6 (tem-
perate forests) to 0.7-1.2 in tropical forests.

The lateral and vertical components are usually pro-
portional to iu such that iw < iv < iu. Close to the
ground, iw usually decreases rapidly because vertical
fluctuations are constrained there.

Frequency spectra can be again used as a window on
the fine structure of turbulence.



The spectral peaks do not seem to change as we de-
scend into the canopy.





Above a vegetation canopy the spectra scale with a di-
mensionless frequency f = n(z−d)

u . within the canopy,
spectra do not scale with any dimensionless frequency,
rather their peak frequency n tends to be independent
of height.



Kolmogorov’s theory of equilibrium of high Reynolds
number turbulence states that

• spectral gap of 102 - 103 between the energy
containing scale Λ and microscale η is required
for one-decade ISR to exist

• conversion from wave numbers (formulated by them)
to frequencies (f ) assumes Taylor’s hypothesis

• ISR turbulence is isotropic that is eddies forget
large scale anisotropy; this implies that Sv(f) =

Sw(f) = 4/3Su(f)

• no process adding or subtracting TKE from ISR
eddies

Neither of these are fulfilled in the canopy.



Compared to above-canopy conditions,

• Su roll-offs more quickly in ISR

• Sw roll-offs more slowly

• Sv is about the same, that is slope is -2/3 for
frequency-weighted frequency spectra

The next Fig. shows the schematic energy spectrum
function (

∫∞
0 K(κ)dκ = 1

2〈u
′
iu
′
i〉).





As the mean flow work against aerodynamic drag of
the foliage, MKE = 1

2〈ui〉〈ui〉 is directly converted
into heat and fine-scale turbulence in the wakes (WKE).

Eddies of all scales (bigger than canopy elements)
lose TKE to heat and WKE, which affects the differ-
ent spectral components to different degrees and this
further leads to anisotropy.

The spectral shape of ISR is modified.



TKE budget

The consideration of TKE budget brings together what
we have discussed above.

The production of TKE occurs

• at z = h there is a strong peak in shear produc-
tion

• below z = h there is wake production, which is
the dominant term except very close to the canopy
top

The dissipation occurs

• due to wake production by mean flow



• due to wake production by large scale eddies based
on the same mechanism as by the mean flow

• modified, reduced eddy cascade

Considering stationary flow and a horizontally homo-
geneous canopy, the time-averaged TKE budget at a
single point appears as (Raupach and Thom, 1981)

0 = −〈u′w′〉
∂〈u〉
∂z

− 〈u′iu
′
j
′′∂u′′i
∂xj

〉

−
∂

∂z
(
〈p′w′

ρ
+

1

2
〈w′u′iu

′
i〉+

1

2
〈w′′u′iu

′
i
′′〉)− 〈ε〉 (12)

Note that the first, third, fourth and sixth terms corre-
spond the classical TKE budget equation.



The remaining terms are unique to the canopy envi-
ronment

• fifth term represents the transport of TKE by a dis-
persive flux; as with the corresponding momen-
tum transport term in Eq. 5 its importance is un-
known

• second term is wake production term and thus is
of much more certain significance

The next Fig. illustrates the TKE budget in a model
what canopy.



Ps correspond to the first term, Pw to the second term,
Tt to the turbulent transport term (fourth one) and Tp

the pressure transport (third term).

Dt is the total dissipation term, the breakdown of which
is presented in Figure b.

Some comments on transport:



• there exists loss near the top and gain in the lower
canopy

• Tt occurs via coherent large eddies

• pressure transport Tp is almost mirror image of Tt

Some of the transport terms are very difficult to as-
sess (like pressure transport) but it is clear that large
terms and a balance far from local equilibrium are fea-
tures of the canopy.

Note finally that the eddy timescale drops abruptly as
we descend into the canopy.

Future directions
Diabatic effects:



• large values of |hL| are required before significant
influence of buoyancy is discernable

• most solar radiation is absorbed in the upper 30%
of closed canopies, which may lead to at day to
stably stratified lower canopy and weak gravity
waves and under stable conditions K-H instabil-
ities and gravity waves in the upper canopy

• importance for scalar (like carbon dioxide) trans-
port

The next Figs. show typical mean potential tempera-
ture and humidity profiles.



Inhomogeneous flows:

• multiple measurements towers required



• canopies in hills

• non-uniform canopies

• these affect inflection-point profiles

• sparse canopies lead to superposition of wakes
of isolated plants


