

Scale-dependent parametrization of orographic momentum fluxes in HIRLAM

Laura Rontu laura rontu@fmi.fi

June 9, 2005

FINNISH METEOROLOGICAL INSTITUTE

Contents

HIRLAM problems and introduction

Orography parameters and scales

Parametrizations

Home Page

Title Page

•

Page 2 of 23

Go Back Full Screen Close

Quit

Old and new experiments and verification pictures More verification pictures, with explanations Conclusions

HIRLAM problems

HIRLAM problems

• Always windy

HIRLAM problems

- Always windy
- Pressure bias

HIRLAM problems

- Always windy
- Pressure bias
- \Rightarrow More drag to the model

Close

HIRLAM problems

- Always windy
- Pressure bias
- \Rightarrow More drag to the model
- Gravity wave drag

Title Page

Close

Title Page

Page 3 of 23

Go Back

Full Screen

Close

Quit

••

HIRLAM problems

- Always windy
- Pressure bias
- \Rightarrow More drag to the model
- Gravity wave drag
- Modifying surface drag

Title Page

HIRLAM problems

- Always windy
- Pressure bias
- \Rightarrow More drag to the model
- Gravity wave drag
- Modifying surface drag
- \Rightarrow Modifying turbulent mixing

Quit

Tendencies of the horizontal wind $\vec{v}(x, y, z)$ - explicitly resolved and parametrized:

Quit

Tendencies of the horizontal wind $\vec{v}(x, y, z)$ - explicitly resolved and parametrized:

$$\frac{\partial \vec{v}}{\partial t} = (\frac{\partial \vec{v}}{\partial t})_d + (\frac{\partial \vec{v}}{\partial t})_p$$

Full Screen

Close

Quit

Tendencies of the horizontal wind $\vec{v}(x, y, z)$ - explicitly resolved and parametrized:

 $\frac{\partial \vec{v}}{\partial t} = \left(\frac{\partial \vec{v}}{\partial t}\right)_d + \left(\frac{\partial \vec{v}}{\partial t}\right)_p$

Parametrized tendency is due to the divergence of the stress tensor τ_{ij}

Close

Quit

Tendencies of the horizontal wind $\vec{v}(x, y, z)$ - explicitly resolved and parametrized:

 $\frac{\partial \vec{v}}{\partial t} = \left(\frac{\partial \vec{v}}{\partial t}\right)_d + \left(\frac{\partial \vec{v}}{\partial t}\right)_p$

Parametrized tendency is due to the divergence of the stress tensor τ_{ij}

$$(rac{\partial ec{v}}{\partial t})_p = rac{1}{
ho} rac{\partial ec{ au}}{\partial z}, ec{ au} = -\sum_{j=1}^n
ho(\overline{ec{v}'w'})$$

Several sub-grid scales of orography

Title Page

Page 6 of 23

Go Back

Full Screen

Close

Quit

 \blacktriangleright

Components of the parametrized drag

drag	related to	momentum sink	scale
$egin{array}{c} ec{ au}_{ts} & ec{ au}_{o} & ec{ au}_{m} & ec{ au}_{w} & ec{ au}_{t} & e$	turbulent drag due to surface roughness drag due to unresolved small-scale orography blocked flow drag due to mesoscale orography drag due to breaking buoyancy waves turbulence (vertical diffusion)	surface (2D) internal (3D) internal (3D) internal (3D) internal (3D)	micro small meso meso < Δx

Phenomena related to buoyancy waves: wave breaking, blocking

Phenomena related to buoyancy waves: wave breaking, blocking Wave parametrizations from Lilly (1972), Boer et al. (1984) ...

Home Page	
Title Page	
•• ••	
•	
Page 7 of 23	
Go Back	
Full Screen	
Close	

Quit

Phenomena related to buoyancy waves: wave breaking, blocking Wave parametrizations from Lilly (1972), Boer et al. (1984) ... Blocking schemes added - Lott and Miller (1997) ...

Home Page	
Title Page	
•• >>	
Page 7 of 23	
Go Back	
Eull Screen	
Close	
Quit	

Phenomena related to buoyancy waves: wave breaking, blocking Wave parametrizations from Lilly (1972), Boer et al. (1984) ... Blocking schemes added - Lott and Miller (1997) ... In HIRLAM: simple and classical scheme from Meteo France

Phenomena related to buoyancy waves: wave breaking, blocking Wave parametrizations from Lilly (1972), Boer et al. (1984) ... Blocking schemes added - Lott and Miller (1997) ... In HIRLAM: simple and classical scheme from Meteo France - wave generation ~ N U σ_h^2

Home Page	
Title Page	
< →	
•	
Page 7 of 23	
Go Back	
Full Screen	
Close	
Quit	

Phenomena related to buoyancy waves: wave breaking, blocking Wave parametrizations from Lilly (1972), Boer et al. (1984) ... Blocking schemes added - Lott and Miller (1997) ... In HIRLAM: simple and classical scheme from Meteo France - wave generation \sim N U σ_h^2

+ wave breaking at saturation level, reflection

Home Page	
Title Page	
•• ••	
Page 7 of 23	1
Go Back	
Full Screen	
Close	
Quit	

Phenomena related to buoyancy waves: wave breaking, blocking Wave parametrizations from Lilly (1972), Boer et al. (1984) ... Blocking schemes added - Lott and Miller (1997) ... In HIRLAM: simple and classical scheme from Meteo France - wave generation $\sim N \cup \sigma_h^2$ + wave breaking at saturation level, reflection

* blocked flow drag = form drag according to Lott and Miller

Effective or orographic roughness approach - Mason (1985) ...

Close

Small scale orography (SSO) parametrizations

Effective or orographic roughness approach - Mason (1985) ... Problems of this approach:

Close

Home Page Title Page Page 8 of 23 Go Back Full Screen

Close

Quit

Effective or orographic roughness approach - Mason (1985) ... Problems of this approach:

- all scales included

Home Page
Title Page
44 PP
Page 8 of 23
Go Back
Full Screen

Quit

Effective or orographic roughness approach - Mason (1985) ... Problems of this approach:

- all scales included
- indirect: height variance + slopes \Rightarrow z_{0,oro}

Title Page

Small scale orography (SSO) parametrizations

Effective or orographic roughness approach - Mason (1985) ... Problems of this approach:

- all scales included
- indirect: height variance + slopes \Rightarrow $z_{0,oro}$
- 3d effects flattened to surface

Page 8 of 23

Home Page
Title Page
•• ••
Page 8 of 23
Go Back
Full Screen
Close

Quit

Effective or orographic roughness approach - Mason (1985) ... Problems of this approach:

- all scales included
- indirect: height variance + slopes \Rightarrow $z_{0,oro}$
- 3d effects flattened to surface
- \Rightarrow tuning parameter

Home Page Title Page Page 8 of 23 Go Back **Full Screen** Close

Quit

Effective or orographic roughness approach - Mason (1985) ... Problems of this approach:

- all scales included
- indirect: height variance + slopes \Rightarrow $z_{0,oro}$
- 3d effects flattened to surface
- ⇒ tuning parameter

Alternative - Wood et al. (2001), Wilson (2002)

Home Page Title Page Page 8 of 23 Go Back **Full Screen** Close

Quit

Effective or orographic roughness approach - Mason (1985) ... Problems of this approach:

- all scales included
- indirect: height variance + slopes \Rightarrow $z_{0,oro}$
- 3d effects flattened to surface
- \Rightarrow tuning parameter

Alternative - Wood et al. (2001), Wilson (2002)

- SSO directly influence $(\frac{\partial \vec{v}}{\partial t})_p$

Home Page Title Page Page 8 of 23 Go Back **Full Screen** Close

Quit

Effective or orographic roughness approach - Mason (1985) ... Problems of this approach:

- all scales included
- indirect: height variance + slopes \Rightarrow z_{0,oro}
- 3d effects flattened to surface
- ⇒ tuning parameter

Alternative - Wood et al. (2001), Wilson (2002)

- SSO directly influence $(\frac{\partial \vec{v}}{\partial t})_p$
- stability effects included via u_*

Home Page
Title Dage
The Page
44
Page 8 of 23
Go Back
Full Screen
Class

Quit

Effective or orographic roughness approach - Mason (1985) ... Problems of this approach:

- all scales included
- indirect: height variance + slopes \Rightarrow $z_{0,oro}$
- 3d effects flattened to surface
- \Rightarrow tuning parameter

Alternative - Wood et al. (2001), Wilson (2002)

- SSO directly influence $\left(\frac{\partial \vec{v}}{\partial t}\right)_p$
- stability effects included via u_*
- three-dimensionality by exp(-z/l)

Home Page Title Page Page 8 of 23 Go Back **Full Screen** Close

Quit

Effective or orographic roughness approach - Mason (1985) ... Problems of this approach:

- all scales included
- indirect: height variance + slopes \Rightarrow $z_{0,oro}$
- 3d effects flattened to surface
- \Rightarrow tuning parameter

Alternative - Wood et al. (2001), Wilson (2002)

- SSO directly influence $(\frac{\partial \vec{v}}{\partial t})_p$
- stability effects included via u_*
- three-dimensionality by exp(-z/l)

In HIRLAM: z_{oro} used, alternative approach tested

Title Page

Page 9 of 23

Go Back

Full Screen

Close

Quit

••

▶

Orography parameters and scales

variable	definition	scale of orograph
	For resolved dynamics	
$\mathbf{H}_{2\Delta x}$	mean height	> 2∆x
	For mesoscale orography parametrization	
σ_m	standard deviation of mesoscale orography	3 km - 2∆x
α	anisotropy of the mesoscale orography	3 km - 2∆x
θ	angle between mesoscale ridges and model's x-axis	3 km - 2∆x
	For small-scale orographic stress	
(z _{0 oro}	orographic roughness	< 3 km)
S _t	averaged maximum slope s_{max}	< 3 km
σ_t	smallest scale standard deviation	< 3 km
	For turbulence over flat rough surface	
z_0	roughness	<< 1 km
Z 0	roughness	<< 1 km

Source: digital elevation map

Quit

Close

Old experiments and verification pictures

experiment description

RC33	reference HIRLAM with technical corrections
NO33	RC33 but SSO parametrization instead of z _{oro,0}
NM33	NO33 but MSO parametrization added
NT33	NM33 but with rotated turbulent stress vector

European area with $\Delta x=33$ km/40 levels, 00 UTC only + 48h HIRLAM v.6.3.3, boundaries from 33 km/40 level HIRLAM reanalysis 6.2.2 run at ECMWF for the year 2000, observations from ECMWF archive.

Title Page

Home Page

Page 11 of 23

Go Back

Close

Station verification

against EWG observations RC33 (left) NO33 (right) Period: 20000119 - 20000129

Surface pressure

Two metre temperature

6 12 18 24 30 36 42 48

Forecast length (hours)

BIAS

RMS

Mean speed and RMS vector error (m/s)

0

-1

0

- BIAS

RMS

against EWG observations RC33 (left) NM33 (right) Period: 20000119 - 20000129

Surface pressure

Two metre temperature

Mean speed and RMS vector error (m/s)

Two metre relative humidity

against EWG observations RC33 (left) NT33 (right) Period: 20000119 - 20000129

Surface pressure

Two metre temperature

Ten metre wind

Two metre relative humidity

New experiments and verification pictures

Quit

Integration areas of the 33 km (full area of the map) and 11 km (box outlined by dashed line) experiments. Shown in the figure are isolines of the surface elevation (whole area, isoline spacing 300 m) and mean sea level pressure averaged over January 2000 (small area, given by the +48h forecasts of the experiment O33, isoline spacing 5 hPa).

against Isl observations R33 (left) O33 (right) Period: 20000101 - 20000131

Two metre temperature

0 6 12 18 24 30 36 42 48

Forecast length (hours)

BIAS

RMS

Mean speed and RMS vector error (m/s)

2

0

-1

-2

-3

-1

- BIAS

--- RMS

against Isl observations R33 (left) BB33 (right) Period: 20000101 - 20000131

Surface pressure

Two metre temperature

Mean speed and RMS vector error (m/s)

Two metre relative humidity

More verification pictures, with explanations

Mean sea level pressure

Mean sea level pressure

Mean sea level pressure

Experiments from left to right: R33, O33, B33.

Lowest model level wind speed January 2000 00UTC+48h

R33=Reference experiment, O33=MSO+Hirlam style SSO, B33=MSO+ECMWF style SSO. Unit: m/s, area: Iceland.

Total surface stress, January 2000 00UTC+48h

Summary and conclusions

Quit

Summary and conclusion

Summary and conclusions

• Parametrizations of orography-related momentum fluxes in HIRLAM were renewed by replacing the effective roughness approach by new meso- and small-scale orography parametrizations.

Title Page

Page 21 of 23

Go Back

Full Screen

Close

Quit

Summary and conclusions

Parametrizations of orography-related momentum fluxes
in HIRLAM were renewed by replacing the effective roughness
approach by new meso- and small-scale orography parametrizations.
The needed scale-dependent orography variables were derived
from high-resolution digital elevation map.

Home Page Title Page Page 21 of 23 Go Back **Full Screen**

Close

Quit

Summary and conclusions

Parametrizations of orography-related momentum fluxes
in HIRLAM were renewed by replacing the effective roughness
approach by new meso- and small-scale orography parametrizations.
The needed scale-dependent orography variables were derived
from high-resolution digital elevation map.

 Parametrization schemes representing different sub-grid scales interact and partly compensate each other.
 New parametrizations increase the total drag only a little.

Quit

Summary and conclusions

Parametrizations of orography-related momentum fluxes
in HIRLAM were renewed by replacing the effective roughness
approach by new meso- and small-scale orography parametrizations.
The needed scale-dependent orography variables were derived
from high-resolution digital elevation map.
Parametrization schemes representing different sub-grid

scales interact and partly compensate each other. New parametrizations increase the total drag only a little.

• Careful verification and use of diagnostic tools to analyse kinetic energy and vorticity budget are needed to understand the effects and interactions of the parametrizations.

Title Page

Page 22 of 23

Go Back

Full Screen

Close

Quit

References

- [Boer et al., 1984] Boer, G. J., N. A. McFarlane, R. Laprise, J. D. Henderson, and J.-P. Blanchet, 1984: The Canadian Climate Centre spectral atmospheric general circulation model. Atmos. Ocean., 22, 397–429.
- [Brown and Wood, 2001] Brown, A. R., and N. Wood, 2001. Turbulent form drag on anisotropic three-dimensional orography. Bound. Lay. Met., 101, 229–241.
- [Lilly, 1972] Lilly, D. K., 1972: Wave momentum flux a GARP problem. Bull. Am. Met. Soc., 53, 17–23.
- [Mason, 1985] Mason, P., 1985: On the parameterization of the orographic drag. Technical report, Proc. Seminar on Physical parametrization for numerical models of the atmosphere. ECMWF, 139-165.
- [Rontu et al., 2002] Rontu, L., K. Sattler and R. Sigg, 2002. Parametrization of subgrid-scale orography effects in HIRLAM. HIRLAM Tech.Rep., 56, 46pp.
- [Rontu and Bazile, 2003] Rontu L. and E. Bazile, 2003. Problems of MSO parametrization: a case study with Arpége-HIRLAM comparison. Report of HIRLAM workshop on mesoscale modelling, Dublin 14-16 October 2002. 15–20.
- [Rontu, 2003a] Rontu L., 2003a. Derivation of orography-related climate variables for a fine resolution HIRLAM. HIRLAM Newsletter, 44, 83–96.
- [Rontu, 2003b] Rontu L., 2003b. Orography-related problems in HIRLAM. Baltic HIRLAM Workshop, 2003, 75–78.
- [Rontu, 2004] Rontu L., 2004. Experimenting with the orography of HIRLAM. HIRLAM Newsletter, 45, 141–146.
- [Rontu, 2005] Rontu L., 2005. A study on parametrization of orography-related momentum fluxes in a synoptic-scale NWP model. Submitted to Tellus.
- [Wilson, 2003] Wilson, J. D., 2003. Representing drag on unresolved terrain as a distributed momentum sink. J. Atm. Sci. 99, 1629–1637.