IRISØ

On the benefit of downscaling a mesocale model over the coastal area of Denmark

Introduction Coastal Thermodynamic

- Statement of the importance for high resolution Modelling in pollutant transport
 - Oxygen depletion in Kattegat
 - Mesoscale high resolution case study of the sea breeze circulation

Coastal mechanical forcing

- Important meteorology
 - Low level jets (inertial oscillations)
 - Coastal coriolis speed up
 - Coastal curvature and associated vertical movements
 - Internal gravity waves
- Observational examples and method for Ph.D study
- Spectral analysis to capture coherent structures and waves in the stable coastal boundary layer

Risø National Laboratory

Ministry for Science Technology and Innovation

App. 400 scientists

Risø National Laboratory:

App. 800 employees

App. 65 ph.d.-students

Plus app. 140 students

Wind Energy Department

- 1956 Risø is established.
- **1976** new objective: atomic energy and other energy sources
- **1986** new name: Risø National Laboratory. New objective: energy
- **1990** new objective: technology research and development with energy as the main focus area
- 1994 Risø becomes a government undertaking
- 2000 The DR3 research reactor is closed down
 - 2001 New strategy: Energy – Industrial Technology – Bioproduction – Radiation Protection

Objectives & working program for Ph.d.

OBEJTIVES:

• Gain insight in the meteorology special for the coastal zone with focus on small space and time scales

Motivation

- Wind-energy resources
 and siteing
 - Environmental issues
- Nutrient transport from land to sea
 - Oxygen depletion in Kattegat

Method

Observational analysis of important scales in the coastal zone combined with Numeric simulation in an appropriate resolution to capture the identified structures

Algae blooms and oxygen depletion in Kattegat

Thermally forced c irculations over the coastal region

Coastal jet

Sea breeze ©The COMET Program

COAMPS simulation example

Dynamics, Numerics COAMPS:

Nonhydrostatic, Compressible Equations (Klemp and Wilhelmson 1978) Scheme C grid (Arakawa and Lamb, 1974) Sigma-z Vertical Coordinate (Gal-Chen and Somerville,1975) Multiple Nested Grid Option Centered leap-frog time integration Distributed/shared memory architecture (NRL/LLNL,2000)

Physics:

Level 2.5 TKE Closure (Mellor and Yamada 198...) Surface Layer (Louis 1979) Convective Parameterization (Kain and Fritsch 1990) Radiation (Harshvardhan et al. 1987)

Computer

COAMPS is a parallel code running on Linux cluster at Risoe

<u>Setup:</u>

5 and 15 km horizontal resolution 40 vertical lSigma layers Fixed outer boundary conditions

Coamps simulation of flow during land breeze

Contour lines for vertical velocity

(omega)

Red arrows indicates horizontal wind

Coamps simulation of flow during sea breeze

Fully developed seabreeze around Kattegat at 15 It

Cross section of sea breeze circulation

Grader og minutter østlig længde

Coastal mecanical forcing

Low level jets

Impact:

Large shear stress

on wind turbines

Large shear term ove sea surface

Enhanced TKE and deposition velocities

Coastal curvature

Gravity waves in the stable MBL and its influence to the coastal flow – U.S west coast

What is the resolution needed to simulate this pattern ???

Do we have similar dynamics in Denmark and can it explain some of the variability seen -- How is the transport influenced

Gravity waves downstream from Røsnæs - DK.

Warm south-westerly heat advection over cold sea

Air column interacting with coastline and initialising gravity waves downstream

Observational example on internal gravity waves

- Motivation
 - Transport
 - Internal gravity waves supplies and redistributes TKE
 - Heterogeneous deposition
 - Large horizontal wind speeds
- Meteorology
 - Capping inversions
 - Frode numbers close to critical

Observations

Early Spectral analisys on Høvsøre data

Flow numbers 26/04

Powerspectre of W (20 hertz data)

- FFT is used to estimate time scales In the flow field
- Taylor frozen turbulence provides estimation of spatial scales
- *Numeric modelling* hopefully provides further insight and answers the following posed questions
 - Where: (what coastal topografhy-landuse) causes
 - significant forcing to the flow And
 - When: Under which meteorological conditions is high resolution(100-500m) needed and beneficial And
 - If: further downscaling provides additional information

• Thanks for the attention

My way to Risø

Weather forecasting at DMI
 Copenhagen

Master at University of Copenhagen

Ph.D student at Risø- August 2004

Coastal interaction with the stable MBL

Wind Directions With with large windshear: Between 4 and 8 m/s per 40 m What happens When the highly shear aircolum Interact with the Coastline ???