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The momentum equation

ρ
D~V

Dt
= −∇p− ρf~k × ~V − ρg~k + ~F (1)



Molecular friction

~F =
∂τi1
∂xi

~i +
∂τi2
∂xi

~j +
∂τi3
∂xi

~k

τij = µ









∂ui
∂xj

+
∂uj
∂xi








+ λδij∇ · ~V (2)

i, j = 1, 2, 3;
x1 = x, x2 = y, x3 = z, u1 = u, u2 = v, u3 = w

Fx =
∂

∂x





µ






∂u

∂x
+
∂u

∂x





 + λ∇ · ~V



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∂

∂y
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
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
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∂y
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












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∂

∂z





µ



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∂w
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







 (3)



Fy =
∂

∂x








µ
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∂v
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








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
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∂
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






µ









∂v

∂y
+
∂v

∂y








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


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
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∂
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




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
(4)

Fz =
∂

∂x
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
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∂z
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


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∂
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




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





∂v
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+
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














+

∂

∂z





µ






∂w

∂z
+
∂w

∂z





 + λ∇ · ~V




 (5)

HIRLAM: µ and λ are treated as constants

Fx = (µ + λ)
∂

∂x
∇ · ~V + µ∇2u

Fy = (µ + λ)
∂

∂y
∇ · ~V + µ∇2v

Fz = (µ + λ)
∂

∂z
∇ · ~V + µ∇2w (6)



U-momentum equation
From mass continuity

Dρ

Dt
= −ρ∇ · ~V (7)

and
D

Dt

(

ρ~V
)

=
Dρ

Dt
· ~V + ρ

D~V

Dt
(8)

follows

ρ
D~V

Dt
=







D

Dt

(

ρ~V
)

+ ρ
(

∇ · ~V
)

· ~V




 (9)

The U-momentum equation in flux form becomes

ρ
Du

Dt
=







D

Dt
(ρu) + ρu∇ · ~V







=






∂

∂t
(ρu) +∇ ·

(

ρu~V
)







= −∂p
∂x

+ ρfv + Fx (10)



Reynold decomposition

u = u+u′; v = v+v′;w = w+w′;T = T+T ′; ρ =
ρ + ρ′; p = p + p′

γ is mean and γ ′ is fluctuating part of variable γ
governing the atmosphere.

HIRLAM:
The Boussinesq approximation, part 1
ρ = ρ except when multiplied with the acceleration
of gravity g

ρ
Du

Dt
=

∂

∂t
(ρ [u + u′]) +

∇ ·


ρ


u~V + u′~V
′
+ u~V

′
+ u′~V







=

−








∂p

∂x
+
∂p′

∂x








+ ρf (v + v′) + F x + F

′
x (11)



Taking the average of the U-momentum equation,
utilizing that the average of terms containing
only one fluctuation parameter is zero and
utilizing mass continuity for the mean flow, yields

Du

Dt
=

∂u

∂t
+ ~V · ∇u + ρ−1∇ ·



ρ~V ′u′




= −ρ−1∂p
∂x

+ fv + ρ−1F x (12)

(12) is the mean U-momentum equation.
Similarly the mean V and W equations become

Dv

Dt
=

∂v

∂t
+ ~V · ∇v + ρ−1∇ ·



ρ~V ′v′




= −ρ−1∂p
∂y
− fu + ρ−1F y (13)

Dw

Dt
=

∂w

∂t
+ ~V · ∇w + ρ−1∇ ·



ρ~V ′w′




= −ρ−1∂p
∂z
− g

ρ

ρ
+ ρ−1F z

= ρ−1F z (14)



These equations follow by taking the Reynold av-
erage of the instantaneous equations for V and W
in (15) and (16) below.

ρ
Dv

Dt
=

∂

∂t
(ρ [v + v′]) +

∇ ·


ρ


v~V + v′~V
′
+ v~V

′
+ v′~V







=

−








∂p

∂y
+
∂p′

∂y








− ρf (u + u′) + F y + F

′
y (15)

ρ
Dw

Dt
=

∂

∂t
(ρ [w + w′]) +

∇ ·


ρ


w~V + w′~V
′
+ w~V

′
+ w′~V







=

−








∂p

∂z
+
∂p′

∂z








− ρg(1 +

ρ′

ρ
) + F z + F

′
z (16)

HIRLAM: (14) is based on hydrostatic bal-
ance for the mean flow.
HIRLAM: Note that hydrostatic balance for the
mean flow implies that the mean molecular friction
F z is neglected in (14).
HIRLAM: The mean molecular friction terms
F x in (12) and F y in (13) are also neglected.



The second part of the Boussinesq approx.:
Desity fluctuations due to pressure fluc-
tuations are negligible.
can be used to rewrite (16) as

ρ
Dw

Dt
=

∂

∂t
(ρ [w + w′]) +

∇ ·


ρ


w~V + w′~V
′
+ w~V

′
+ w′~V







=

−








∂p

∂z
+
∂p′

∂z








+ ρg

θ′v
θv

+ F z + F
′
z (17)

since, from the equation of state

dρ =
1

Rd







1

Tv
dp−Rd

ρ

Tv
dTv





 ≈ − ρ

Tv
dTv. (18)

Interpreting dρ = ρ− ρ and dT = T − Tv gives

−ρ
′

ρ
≈ T ′

v

Tv
=
θ′v
θv
. (19)



HIRLAM: Turbulence (within a grid-cell)
is horizontally homogeneous

Du

Dt
=−ρ−1∂p

∂x
+ fv

+ ρ−1
∂

∂z





ρν
∂u

∂z
− ρu′w′







Dv

Dt
=−ρ−1∂p

∂y
− fu

+ ρ−1
∂

∂z





ρν
∂v

∂z
− ρv′w′







0≈ ρ−1
∂p

∂z
− g (20)

Note that mean molecular friction (approximated
by neglecting the terms containing spatial gradi-
ents of the divergence) has been reintroduced in
the horizontal momentum equations. This is done
to show the analouge form of turbulent friction in
HIRLAM.
HIRLAM: In the derivation of the turbulent ki-
netic energy equation the contribution to dissipa-
tion of TKE from spatial variations in∇· ~V ′ is also
neglegted.



HIRLAM:
Parameterization of turbulent momentum
fluxes is an analogue to molecular diffu-
sion

−u′w′ = Km
∂u

∂z

−v′w′ = Km
∂v

∂z
(21)

ν: property of medium (gas/fluid)
Km: property of flow; varies strongly in
space and time

Example: Monin-Obukhov surface layer
similarity
Km = kzu∗/φm (z/L)



HIRLAM:

Km = lm
√
e (22)

e = 0.5
(

u′2 + v′2 + w′2
)

is the mean turbulent ki-

netic energy (TKE).
HIRLAM: lm is diagnostic length scale of tur-
bulence.
From (20) the local rate of change of mean momen-
tum due to turbulence becomes

∂u

∂t
= g2

∂

∂p








ρ2Km

∂u

∂p









∂v

∂t
= g2

∂

∂p








ρ2Km

∂v

∂p








(23)

Lower boundary condition
To increase numerical stability surface values

Kmx ≈ −u′w′
szn/u

Kmy ≈ −v′w′
szn/v

are used instead of surface fluxes−u′w′
s and−v′w′

s.
Knowledge of e is needed to solve (23).



Turbulent kinetic energy equation
Obtained by adding the equations in (24)

u′








Du

Dt
− Du

Dt








= u′~V ′ · ∇u + u′

∂u′

∂t

+ u′~V · ∇u′ + u′~V ′ · ∇u′

=−ρ−1u′∂p
′

∂x
+ fu′v′ + νu′∇2u′

v′








Dv

Dt
− Dv

Dt








= v′~V ′ · ∇v + v′

∂v′

∂t

+ v′~V · ∇v′ + v′~V ′ · ∇v′

=−ρ−1v′∂p
′

∂y
− fu′v′ + νv′∇2v′

w′








Dw

Dt
− Dw

Dt








=w′~V ′ · ∇w + w′∂w

′

∂t

+ w′~V · ∇w′ + w′~V ′ · ∇w′

=−ρ−1w′∂p
′

∂z
+ θ′vw

′ g

θv
+ νw′∇2w′

(24)



By using incompressibility for the fluctuating part
of the flow (implying ∇ · ~V ′=0) the TKE equation
becomes

∂e

∂t
+ uj

∂e

∂xj
=








−u′iu′j

∂ui
∂j









S

+





+
g

θv
u′iθ

′
vδ3i







B

+








− ∂

∂xj
(eu′j)









T

+





−ρ−1 ∂

∂xi
(p′u′i)







T

+











νu′i
∂2u′i
∂x′2j











D

(25)

e = 1
2

(

u′2 + v′2 + w′2
)

e = 1
2

(

u′2 + v′2 + w′2)

Subscripts: S for shear production,B for buoyancy
production, T for transport and D for dissipation.



HIRLAM: Since turbulence is assumed to be hor-
izontally homogeneous within a grid volume, the
local rate of change of mean TKE due to subgrid-
scale turbulence is

∂e

∂t
=





−u′w′∂u

∂z
− v′w′∂v

∂z







S
+





+
g

θv
w′θ′v







B

+

−






∂

∂z
ew′ + ρ−1

∂

∂z
p′w′







T
+








ν








u′
∂2u′

∂z2
+ v′

∂2v′

∂z2
+ w′∂

2w′

∂z2

















D

(26)

−w′w′∂w/∂z has been omitted, since it is much
smaller than the retained terms in the shear pro-
duction.



HIRLAM: The terms in the TKE equation are
parameterized as





−u′w′∂u

∂z
− v′w′∂v

∂z







S
≈ Km

















∂u

∂z







2

+






∂v

∂z







2














+
g

θv
w′θ′v







B

≈ − g

θv
Kh

∂θv
∂z

−






∂

∂z
ew′ + ρ−1

∂

∂z
p′w′







T
≈ ∂

∂z





2Km
∂e

∂z














ν








u′
∂2u′

∂z2
+ v′

∂2v′

∂z2
+ w′∂

2w′

∂z2

















D

≈ −Kε
e

l2ε
(27)

Km = lm
√
e;

Kh = lh
√
e;

Kε = lε
√
e.

Note that there must be a negative sign in the pa-
rameterization of TKE-dissipation since γ ′ tends
to be negatively correlated with ∂2γ′/∂z2 (a local
maximum and minimum in γ ′ tends to be positive
and negative, respectively).

Specification of turbulence length scales lm, lh and
lε is a challenge - ongoing work in HIRLAM.
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Figure 1: Schematic model levels in HIRLAM: Half levels (black), full levels (dotted
red). Currently n = 40.

HIRLAM: Advection of e at half levels is done
by winds at full levels!!!



Lower boundary condition for e
HIRLAM: e is constant in the surface layer and
calculated by

en+1/2 =




3.75 + δu


−zn
L





2/3




u∗
2 + 0.2δuw∗

2

(28)
δu is 1 or 0 in ustable and stable stratification, re-
spectively.
The TKE-equation (27) is partly implicit in time
and solved for e at levels i = n − 1

2
to i = 1

2
with

surface input from (28).

Calculation of e in the surface layer ((28)) requires
knowledge of the turbulent kinematic surface fluxes
of heat (−w′θ′vs), moisture (−w′q′s) and momen-

tum (
(

−u′w′
s
2
+−v′w′

s
2
)1/2

) since

L = − u2∗
θv∗

θv
kg

(29)

w∗ =






g

θv
w′θ′vs







1/3

(30)

Note: In (28) to (30)

u2∗ =
(

−u′w′
s
2
+−v′w′

s
2
)1/2

−w′θ′vs = u∗θv∗



Calculation of kinematic surface fluxes
γ = u, v, θ, q, ql, .....
Exchange coefficient method

w′γ′ = Cγ∆γ| ~Vn|

Cγ = CγNΨγ








Ri,

zn
z0m

,
zn
z0γ









CγN = CmN








1 + ln

z0m
z0γ

/
zn
z0m









−1

CmN = k2




ln
zn
z0m







−2
(31)

In (31) ∆γ = γs−γn and Ψγ is a stability function.

The surface layer bulk Richardson number is used
as a dynamic stability parameter in place of zn/L.



Unstable straticication

Ψγ = 1 +
aγURi

1 + bγUCγN

(

−Ri znz0m
)1/2 (32)

amU = 10, ahU = aqU = 15,
bmU = bhU = bqU = 75

Stable stratification

Ψm = 1

1+
amSRi√
1+bmSRi

Ψγ =
1

1 + aγSRi
√

1 + bγSRi
(33)

amS = ahS = aqS = 10,
bmS = bhS = bqS = 1



Rotation of surface stress
The horizontal mean momentum equations for the
steady state, horizontally homogeneous barotropic
PBL are

0 = f (v − vg0)−
∂u′w′

∂z
= fva + Ftx

0 = −f (u− ug0)−
∂v′w′

∂z
= −fua + Fty

(34)

Turbulent friction: ~Ft = (−∂/∂z(u′w′)~i−∂/∂z(v′w′)~j).
Surface stress: ~τ = (−u′w′~i− v′w′~j).

Wind: ~V = u~i + v~j.
Geostrophic wind: ~Vg0 = ug0~i + vg0~j.



Manipulation of (34) yields

〈~Ft〉 = f~k × 〈 ~Va〉 = −h−1~τs (35)

w(h) = f−1~k · ∇ × ~τs (36)

|〈~Va〉| cosαF =
1

fh
|~τs| cosαF (37)

FA = fVg0|〈~Va〉| cosαF = Vg0|〈~Ft〉| cosαF (38)

〈~Ft〉: PBL mean turbulent frictional force per unit
mass.
〈 ~Va〉: PBL mean ageostrophic wind.
αF : Angle between surface stress and geostrophic
wind.
|〈~Va〉| cosαF : mean ageostrophic wind in the di-

rection perpendicular to ~Vg0 - proportional to the
net cross isobaric mass flow in the PBL.
(38) states that the rate of work done by the fric-
tional force is equal in magnitude to the rate of
work done by the horizontal pressure gradient force.

Note: According to (37) the net cross isobaric mass
flow in the PBL is proportional to the component
of the surface stress along the geostrophic wind.



Before rotation Rotation New equilibrium

SURFACE STRESS

SURFACE LAYER WIND

 GEOSTROPHIC WIND

IDEALIZED BAROTROPIC BOUNDARY LAYER

Figure 2: Schematic picture of the effect of a clockwise rotation of the surface stress in
the Northern Hemisphere

It follows from (35) to (38) (Nielsen and Sass, 2005)
that the response to clockwise rotation of the sur-
face stress away from the surface layer wind is:

an increase in surface stress
an increase in surface cross isobar angle
∆α: Angle the surface stress is rotated clockwise
from surface layer wind

Currently cos∆α = 1 −
(

Ri∗
1+ari∗

)γ
with Ri∗ = Ri,

γ = 1 and a = (1 − 0.9)−1/γ. If Ri∗ < 0 then
∆α = 0
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Figure 3: Variation with forecast lead time of surface cross isobar angle (top row) and
cross isobaric mass flow (bottom row) in 1D-DMI-HIRLAM for barotropic conditions.
Subscripts hol0 and cbr0 are for runs with the Holtslag scheme and the CBR scheme,
respectively. Subscripts hol1 and cbr1 are for the same schemes with a clockwise rotation
of the surface stress relative to the surface layer wind (see text). Subscripts 40 and 80
denote 40 and 80 vertical model levels, respectively. The location is at 70◦N and the
runs start from 00UTC on 20 December with z0 = 0.01m, Vg = 10ms−1, Ts = 10◦C
(surface temperature), a lapse rate 0.009Km−1 up to 1500m and isothermal conditions
above. The initial relative humidity is 20% and constant with height. Time step 576
corresponds to 48 hours. Note the 4 inertial cycles in the cross isobaric mass flow and
the more rapid damping of the corresponding oscillation in α0.
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Figure 4: Evolution with time of the surface momentum flux. Initial

conditions and meaning of subscripts are the same as in Figure 5.



Turbulent length scales

Stable stratification
lm =

(

l2ms + l2mb

)1/2
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l2hs + l2hb
)1/2

lms = em
√
e

N ; em = 0.1f (Ri, p)

lhs = eh
√
e

N ; eh = 0.1

Unstable stratification
lm = lmb; lh = lhb

..........................................................

lmb =
(

λ2 + l2mi

)1/2

lhb =
(

λ2 + l2hi
)1/2

λ−1 = 1
akz/2 +

1
λ0
;λ0 = 75m

lmi =
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1
lmup
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lmdw




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


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lhup
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
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lγup =
∫z
z=0 Fγ(Ri)dz

′; γ = m,h
lγdw =
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z Fγ(Ri)dz

′; γ = m,h

lε =
1

3.752lm ≈ 0.07lm

For more details: See Unden et al. 2002
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Figure 5: HIRLAM-NWP at DMI since 1992. Evolution with time of (upper part)
root mean square error (rms) of mean sea level pressure (mslp) and (bottom part) bias
of mslp evaluated against european observations (EWGLAM station list). The marked
decrease in rms in 2000 is believed to be due mainly to the introduction of reanalyses with
longer observation cutoff and blending of large scales from ECMWF into the HIRLAM
analyses. The decrease in rms in recent years is a combined effect of improvements in in
use of observations, analysis method and model dynamics and model physics, the latter
including surface stress rotation since mid-2004. Forecast lead time is 24 hours.
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