## Atmospheric transport and deposition of coarse solid particles: relations with PBL (and underlying terrain)

#### Marko Kaasik University of Tartu, Estonia marko.kaasik@ut.ee

# Basic: turbulent dispersion depending on PBL stability

Flux of a passive admixture to the surface:

J = w'C'

Or in gradient-transfer theory formulation:

$$J = -K_{(h)} \partial C / \partial z$$

Often taken the same *K* as for heat:

$$H = -K_h \rho c_p \,\partial \overline{\theta} / \partial z \qquad \text{or} \qquad H = \rho c_p \,\overline{w' \theta'}$$

## Briggs' dispersion parameters: "Old stuff", but still useful in many cases.

For idealised Gaussian dispersion  $\sigma_i = (2K_i t)^{1/2}$  for plume

$$C = \frac{Q}{2\pi\sigma_z\sigma_y u} \exp\left[-\frac{y^2}{2\sigma_y^2} - \frac{(z-H)^2}{2\sigma_z^2}\right],$$

but real stratification makes certain correctives and therefore Briggs (1970's) proposed on experimental basis, e.g. for open country for small releases (0.1 < x < 10 km):

$$\sigma_z = 0.06x(1+1.5x)^{-1/2}$$
Pasquill stability "D"
$$\sigma_z = 0.03x(1+0.3x)^{-1}$$
Pasquill stability "E"
$$\sigma_z = 0.016x(1+0.3x)^{-1}$$
Pasquill stability "F"





Location of snow sampling sites, Narva power plants (PP-s) and minor industrial sources

Deposition fluxes (average and standard deviation) of fly ash estimated from measurements and computed applying SILAM, December 2 - 14, 2002. Number of samples is indicated in brackets.

| Site type (number<br>of samples) | Measured deposition flux, mg/m <sup>2</sup><br>per day, <u>based on</u> : |      |                         |      |            |      | SILAM:                               |      |                                          |      |
|----------------------------------|---------------------------------------------------------------------------|------|-------------------------|------|------------|------|--------------------------------------|------|------------------------------------------|------|
|                                  | Ca <sup>2+</sup>                                                          |      | spheroidal<br>particles |      | total mass |      | deposition<br>flux, mg/m²<br>per day |      | concen-<br>tration,<br>µg/m <sup>3</sup> |      |
| Woodland (6)                     | 29.0                                                                      | ±4.5 | 30.2                    | ±5.4 | 25.6       | ±2.2 | 3.7                                  | ±0.3 | 6.0                                      | ±0.5 |
| Open land (5)                    | 28.3                                                                      | ±3.6 | 38.5                    | ±4.1 | 26.5       | ±1.7 | 3.7                                  | ±0.3 | 6.0                                      | ±0.5 |



0.1 0.5 2

7 10

4

0.1 0.5 2

7 10

4

SILAM dispersion and deposition, HIRLAM meteo

December 2 – 14, 2002

#### Vertical dispersion



SILAM (FMI, Finland)



#### AEROPOL (Tartu Observatory, Estonia)



#### **AEROPOL**: HIRLAM meteo, Gaussian reflection with gravitational sedimentation only, 8.15 $\mu$ m ash particles ( $\rho$ = 2800 kg/m<sup>3</sup>).

#### Reflection, partial or complete adsorption?





#### **AEROPOL**:

HIRLAM meteo, complete Gaussian adsorption, gravitational sedimentation and vertical flow, 8.15  $\mu$ m ash particles ( $\rho = 2800 \text{ kg/m}^3$ ).

#### What a kind of particles?

The main admixture in flue gases is water vapour – about 60 g/m<sup>3</sup> or 30 times more than fly ash.

Cooling rapidly from +300 °C down to -10...-20 °C that water most likely gets frozen onto the particles making them much larger.  $v_d$  must increase.





#### **AEROPOL**:

HIRLAM meteo, complete Gaussian adsorption, gravitational sedimentation and vertical flow, 25  $\mu$ m ice/ash particles ( $\rho$  = 1000 kg/m<sup>3</sup>).

### Are HIRLAM met. data correct?



Wind roses

Surface heat fluxes

(MRF - http://www.arl.noaa.gov/ready)

HIRLAM  $\rightarrow$  mainly Pasquill stability "D" MRF  $\rightarrow$  often Pasquill stability "E" or "F"



#### **AEROPOL**: <u>MRF meteo</u>, complete Gaussian adsorption, gravitational sedimentation and vertical flow, 25 $\mu$ m ice/ash particles ( $\rho = 1000 \text{ kg/m}^3$ ).



Deposition flux, computed for measurement point No. 1 (AEROPOL, 25 μm particles) Deposition fluxes: HIRLAM vs. MRF met. data, different options (AEROPOL)

| met. data                     | HIRLAM             | MRF |      |
|-------------------------------|--------------------|-----|------|
| options                       |                    |     |      |
|                               |                    |     |      |
| Reflection, 8.15 µm particles | 1.4                |     | 3.9  |
| Adsorption, 8.15 µm particles | 3.5                |     | 5.3  |
| Adsorption, 25 µm particles   | 4.9                |     | 17.0 |
| Measured                      | Ca-based:          |     | 28.7 |
|                               | Sphparticles-based |     | 34.0 |
|                               | Total mass-based   |     | 26.0 |

## Conclusions

So large deposition fluxes are not possible otherwise than particles must be concentrated into a thin (compared to the stack height) near-surface layer.

Thus, forced mixing of plume within PBL is not always justified in a lower meso-scale model, but vertical dispersion must be treated carefully!

More complex measurements and modelling exercises are needed.

# Acknowledgements

NordForsk (NorFA) – projects NetFAM and Baltic HIRLAM.

Estonian Science Foundation – grant No. 5002 "The interaction of forest and fly ash influx"