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Flux-gradient relationships (1)

Applied in meteorological models to calculate vertical fluxes from mean profiles
as a function of stability

Originate from Monin-Obukhov Similarity (MOS) theory
— homogeneous land surface
— stationary situation (turbulence is continuous)
— based on dimensional analysis (Buckingham-Pi theorem)

Dimensionless height : i = —% V\:Jf note: A is local Obukhov length
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Flux-gradient relationships (2)

Shape of the ¢,(z/AA\) -function
must be found from observations.

Here uncertainty and scatter are
introduced.
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Dimensionless shear (¢,,) and lapse rate (¢,)

Scatter in qbﬁ(z//\) is larger than in %(Z/A)

Possible sources of scatter:
* I
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» Absence of no-slip BC for T Bus-Dyer ]
» Contaminating processes o | ml It &
(gravity waves / LLJet ) "_ il
« Radiative flux-divergence | T
4
* Violation assumptions MOS i i
 Estimation of the gradients i
» Observational problems ° 0 ) ) 3 4 5

» Self-correlation




Self-correlation in theory

Arises when one parameter A (ratio, product, ...), is correlated with a second
parameter B (ratio, product, ...) and the 2 parameters have some common
element(s).

Plots where self-correlation is involved reflect the mathematical relation
between the common variables, rather then something fundamental about
atmospheric physics.

Self-correlation often results from (inappropriate) use of dimensional analysis
Example:
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Common elements in zZ/A, ¢, and ¢,
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Hypotheses: The difference in scatter between ¢, and ¢, is caused by a different
impact of self-correlation on the ¢ -functions, resulting from both = and H

Sensitivity analysis:

* In which direction does a reference point shift, when we impose relative
errors on 7 and H?

 What is the influence of the ratio

T/ T
a Py
AH/H on the type of self-correlation”

Andreas and Hicks, 2002



Sensitivity analysis - technique

We’'re interested in O as a result of imposed errors on the
a(zA) common elements = and H

 Method:
kz du 1
a%—@[W @ J‘ {%)
. 01/t
oy = 2t/ o) do o o The ratio —aH/H
h— H/(pc,) dz - H Is substituted in the results




Does self-correlation make the difference?

Example Businger:

Say dH/H = d/z, then Error analysis ¢m and ¢m //
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In general do/v# dH/H !/

« Simulation with random data
relative to a reference point

. 4 Limit situations of _2%/%
oH /H

« Max error is 20%

» " Perpendicular’ vs 'parallel’ shift

> In the SBL ¢,(z/A\) will show more
scatter than ¢,_(z//\) due to self-
correlation

» Ratio of the errors in 7 and H is
important

12

dH/H=d 7/t

12

dH/H=0, |dz/4>0

2 4

12

|dH/H|>0, d7/=0

12

|dH/H|# |dz/d

g

A
tl
A

0

4 X @ VS (Z/N)

¢m ¢h




Stability dependence of self-correlation
- observations -
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» A constant ratio of 07z and dH/H cannot a priori be assumed

> So type of self-correlation depends on stability



Real and randomized data

Construct a randomized dataset by using the original observations
as a pool of values to draw from at random (Klipp & Mahrt, '04).

Randomize;

u., H, du/dz, d@/dz
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Conclusions

* Flux-gradient relationships are sensitive to self-correlation because = and H
occurs in both axes

« Itis mathematically explained from sensitivity analyses that for the SBL
scatter in ¢,(z//\) is larger than in ¢_(z/A).

- Note: for the unstable regime, the effect is mostly reversed
» The effect of self-correlation depends highly on the ratio of 0z/z and dH/H

« The ratio of 0z and dH/H varies with stability. As a consequence the type
of self-correlation depends also on stability.
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