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Flux-gradient relationships (1)

• Applied in meteorological models to calculate vertical fluxes from mean profiles 
as a function of stability

• Originate from Monin-Obukhov Similarity (MOS) theory
– homogeneous land surface
– stationary situation (turbulence is continuous)
– based on dimensional analysis (Buckingham-Pi theorem)

• Dimensionless height : note:  Λ is local Obukhov length

• Dimensionless shear :

• Dimensionless lapse rate :
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Flux-gradient relationships (2)
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Dimensionless shear (φm) and lapse rate (φh)

Scatter in φh(z/Λ) is larger than in φm(z/Λ)

Possible sources of scatter:

• Absence of no-slip BC for T

• Contaminating processes 

(gravity waves / LLJet )

• Radiative flux-divergence

• Violation assumptions MOS

• Estimation of the gradients

• Observational problems

• Self-correlation
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Self-correlation in theory
• Arises when one parameter A (ratio, product, …), is correlated with a second 

parameter B (ratio, product, …) and the 2 parameters have some common 
element(s).

• Plots where self-correlation is involved reflect the mathematical relation 
between the common variables, rather then something fundamental about 
atmospheric physics.

• Self-correlation often results from (inappropriate) use of dimensional analysis

• Example:
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Hypotheses: The difference in scatter between φm and φh is caused by a different 
impact of self-correlation on the φ -functions, resulting from both τ and H

Sensitivity analysis: 
• In which direction does a reference point shift, when we impose relative 

errors on τ and H?
• What is the influence of the ratio on the type of self-correlation?

Andreas and Hicks, 2002

Note that and

Common elements in z/Λ, φm and φh
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Sensitivity analysis - technique

• We’re interested in as a result of imposed errors on the
common elements τ and H

• Method:
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Does self-correlation make the difference?

• Say dH/H = dτ/τ, then

Example Businger:
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In general dτ/τ ≠ dH/H !
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• Simulation with random data 
relative to a reference point 

• 4 Limit situations of 

• Max error is 20%

‘ Perpendicular’ vs ’parallel’ shift

In the SBL φh(z/Λ) will show more 
scatter than φm(z/Λ) due to self-
correlation

Ratio of the errors in τ and H is 
important
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Stability dependence of self-correlation
- observations -
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0 < z/Λ < 0.1 0.5 < z/Λ < 1 z/Λ > 2

A  constant ratio of ∂τ/τ and ∂H/H cannot a priori be assumed

So type of self-correlation depends on stability
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Real and randomized data
Construct a randomized dataset by using the original observations 
as a pool of values to draw from at random (Klipp & Mahrt, ’04).

0

2

4

6

8

10

0 1 2 3

randomized data
real data

0

2

4

6

8

10

0 1 2 3

randomized data

real data

z/Λz/Λ

φ m

φ h

Randomize:

u*, H, du/dz, dθ/dz



Conclusions

• Flux-gradient relationships are sensitive to self-correlation because τ and H 
occurs in both axes

• It is mathematically explained from sensitivity analyses that for the SBL 
scatter in φh(z/Λ) is larger than in φm(z/Λ).

Note: for the unstable regime, the effect is mostly reversed

• The effect of self-correlation depends highly on the ratio of ∂τ/τ and ∂H/H

• The ratio of ∂τ/τ and ∂H/H varies with stability. As a consequence the type 
of self-correlation depends also on stability.
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