

Application of satellite snow and ice measurements in NWP

March 24, 2010

Jouni Pulliainen FMI, Arctic Research

Climate and water cycle at northern latitudes

Conceptual diagram on the connectivity of the positive ice/snow albedo feedback, terrestrial snow and vegetation feedbacks and the negative cloud/radiation feedback (From UNEP, 2007).

Significance of snow information for runoff

- Accumulated annual snowfall divided by annual runoff (colour scaled between 0 and 1). Red lines: streamflow is snowmelt-dominated, no adequate reservoir storage capacity to buffer shifts in the seasonal hydrograph.
- Black lines: additional areas where water availability is dominantly influenced by snowmelt
- Inset: regions of the globe that have complex topography. (From Barnett et al., 2005).

Background (I)

- Present satellites able to provide snow and ice observations on daily basis with full spatial coverage:
 - Snow extent and fractional coverage within pixel/calculation area (e.g. subdrainage basin)
 - Snow water equivalent (SWE) and snow depth
 - Snow melt (on-set, snow clearance, patchiness during melt)
 - Lake ice information
 - Sea ice concentration
 - Ice types (winter-time navigation)
- Current feasible instruments applicable for global and regional monitoring
 - Microwave radiometers (SSM/I, AMSR-E, SMOS)
 - Microwave radars
 - High/moderate resolution SAR (Radarsat-2, Envisat ASAR)
 - Optical imagers (MODIS, AVHRR, MERIS)
 - Coverage limited by clouds

Ascending node SSM/I microwave radiometer observations of the northern hemisphere from a single winter day, 1.1. 1999 (37 GHz horizontal polarization)

Background (II)

- Satellites measuring Earth's surface and atmosphere are only means of getting frequent spatial information on Essential Climate Variables (ECV) with a full coverage
 - However, the use has been limited until recently due to inaccuracies of satellite data retrievals
 - Assimilation and calibration schemes (e.g. combination with *in situ* data) has provided improved quality
- Assimilation to dynamic models
 - Operational assimilation of snow information to hydrological forecasting systems successfully implemented e.g. in Finland
 - => providing improved discharge forecasts
 - Same approaches can be applied to numerical weather prediction

Example on assimilation of satellite data retrievals to dynamic models

Drawbacks of current snow information

- Interpolation of weather station or snow course data
 - Dense weather station observations only available for some countries (e.g. Finland), sparse networks especially in north of Eurasia and North America
 - Single point measurements typically in open areas (e.g. vicinity of airfields) => systematic errors possible
 - Problems due to topography in mountain regions
 - Snow course observations typically rare
- Re-analysis data
 - Models may suggest false predictions

Deficits of re-analysis data and ground data interpolation

- ERA-40 re-analysis data of ECMWF:
 - Maximum SWE in 1989
 - (SWE = snow water equivalent indicating the total amount of snow)

ERA-40 max swe 1989

 Corresponding INTAS-SCCONE Russian ground based observations (SWE from 210 snow courses around northern Eurasia)

Current ESA GMES PolarView Service of FMI: Northern Eurasian Snow Monitoring

- Snow Water Equivalent (SWE) and Snow Depth by assimilating AMSR-E microwave radiometer and synoptic weather station data
- Production of bi-weekly 30-year ECV time-series on SWE currently ongoing in ESA GlobSnow project

HUT snow emission model

- Background of the applied model
 - Semi-empirical model simple enough to be used for parameter retrieval from spaceborne or airborne data (e.g. by statistical inversion)
- Basic characteristics
 - scalar radiative transfer model for single snow layer
 - semi-empirical formulas for snow permittivity and extinction coefficient
 - empirical coefficient for radiation contribution scattered in snow layer
 - incoherent approach used for medium boundary effects
 - soil-snow reflectivity by empirical soil emission models
 - empirical formulas for atmospheric and forest cover effect

Model principle:

• Attenuation of radiance

$$\frac{dL(r,\hat{s})}{ds}\Big|_{\text{vaimennus}} = -\left(\kappa_a + \kappa_s\right)L(r,\hat{s})$$

Increase of radiance due to scatter

$$\frac{L_{s}(r,\hat{s})}{ds} = \int_{4\pi} \frac{N_{v}}{V} |f(\hat{s},\hat{s}')|^{2} L(r,\hat{s}') d\Omega'$$

• And when the emission from a volume unit is: $\kappa_a J(r, \hat{s}) ds$

the general formula of the radiative transfer equation is obtained:

$$\begin{split} \frac{dL(r,\hat{s})}{ds} &= -\left[\kappa_a + \kappa_s\right]L(r,\hat{s}) + L_s(r,\hat{s}) + \kappa_a J(r,\hat{s}) \\ &= -\left[\kappa_a + \kappa_s\right]L(r,\hat{s}) + \int_{4\pi} \rho |f(\hat{s},\hat{s}')|^2 L((r,\hat{s}')d\Omega' + \kappa_a J(r,\hat{s})) \\ \Leftrightarrow \\ \frac{dL(r,\hat{s})}{ds} &= -\kappa_e L(r,\hat{s}) + \frac{\kappa_s}{4\pi} \int_{4\pi} \frac{4\pi |f(\hat{s},\hat{s}')|^2}{\sigma_s} L(r,\hat{s}')d\Omega' + \kappa_a J(r,\hat{s}) \end{split}$$

GlobSnow: An Overview

ESA DUE GlobSnow

- Global products on Snow Water Equivalent (SWE) and Snow Extent (SE) for climate research
 - Fundamental Climate Data Record (FCDR) aiming for ECVrecord
- Team including Finnish, Austrian, Swiss, Norwegian and Canadian partners

ESA GlobSnow (2008 – 2011)

- Production of new global snow extent (SE) and snow water equivalent (SWE) climate data records, with a demonstration of a near-real-time processing capability.
- Consortium led by the Finnish Meteorological Institute (FMI) with collaborators: ENVEO IT (Austria), GAMMA Remote Sensing (Switzerland), Norwegian Computing Center (NR), Finnish Environment Institute (SYKE), Environment Canada and Norut (Norway).
- Project details including technical reports and newsletters available at globsnow.fmi.fi.

LMATIETEEN LAITOS Meteorologiska institutet Innish meteorological institute

Products and Database

- The selection of features and details of the SE and SWE products will be made based on the outcome of this Workshop
 - Aggregation of daily products
 - Potentially e.g. monthly averages, weekly averages and sliding averages
 - Meta-data
 - Accuracy characteristics will be delivered for both products
 - Pixel-wise temporally changing statistical accuracies already available for the SWE product (error maps concurrent with SWE maps)
 - Additionally, evaluation of accuracies against independent reference data (both products): snow courses, station observations and high resolution reference images
- 30-year-long SWE and 15-year-long SE datasets will be made publicly available for the climate research community (FCDR)
- Demonstration of near-real-time product delivery

Coverage of products

• SWE

- Northern hemisphere, 35°- 85° (SWE for dry snow-covered non-alpine regions)
- First demonstrations and protype data sets made for the whole region

• SE

- Snow regions of both hemispheres:
 - 35° 85° in northern hemisphere
 - Snowy mountain regions of southern hemisphere
- Prototype dataset provided for the pan-European test region

LMATIETEEN LAITOS Meteorologiska institutet Finnish meteorological institute

Use of GlobSnow Products

• Potential of products for different climate research applications

- Reference for climate models (model development and validation)
- Input data for spatially distributed environmental/atmospheric process models
- Climate trend analyses
 - As in case of climate model analyses, typically time-series from 25 to 30 years are required as the minimum
- Daily demonstration product can be applied for NWP and hydrological forecasting

ILMATIETEEN LAITOS METEOROLOGISKA INSTITUTET FINNISH METEOROLOGICAL INSTITUTE

GlobSnow SE Product

- Snow Extent based on optical ATSR (1995-) and AATSR (2002-)
- Two main techniques selected:
 - SCAmod algorithm for FSC by SYKE applicable to non-mountainous regions (including forested areas)
 - Norwegian Linear Reflectance (NLR) algorithm by NR for fractional snow cover (FSC) at mountain areas
- New features:
 - Improved accuracy for forested regions compared with current algorithms (e.g. NASA MODIS)
 - Enables longer time-series than MODIS
 - Enables higher performance than AVHRR (most AVHRR sensors do not include the 1.6 μm channel)
- Operational near real time service will be demonstrated during 2010/2011.

yellow – clouds green – bare ground white – snow cover

GlobSnow AATSR daily product (Fractional Snow coverage)

ILMATIETEEN LAITOS METEOROLOGISKA INSTITUTET FINNISH METEOROLOGICAL INSTITUTE

GlobSnow SWE Product

- Proposed approach: Assimilation of satellite data with *in situ* observations-derived bckground field on snow depth.
 - Only approach utilizing passive microwave radiometer observation providing sufficient accuracy level on a global scale
- Statistical error estimate produced for each grid cell.
- SWE retrievals for all terrestrial snow regions of northern hemisphere excluding alpine regions and glaciers.
- Time series extending from 1978 to present:
 - Full coverage for dry snow cover areas (combined mapping of melting regions)
 - Daily estimates calculated (aggregated to more practical end-products)
- Operational near-real-time service will be demonstrated during 2010/2011.

Prototype of Final SWE Product

- Daily maps of hemispherical snow cover:
 - Total snow area
 - Permanent sesonal snow cover
 - SWE for the snow area
- Regions with high topograpical variability are masked off
 - Alpine regions
 - Glaciers will be also masked
- NRT production of SWE will be demonstrated in 2010-2011

SWE on 2008/03/15 in [mm]

Snow Melt Estimated from Radiometer Data

- Analysis of time-series of satellite data (change of emissivity due to the snow melt)
- Calibration here against ground-based observations at ~200 stations

Reference:

Takala, M., Pulliainen, J., Metsämäki, S., and Koskinen, J. (2009), Detection of snow melt using spaceborne microwave radiometer data in Eurasia from 1979-2007. *IEEE Transactions on Geoscience and Remote Sensing*, 47: 2996-3007.

The color code is the number of the melt date since January 1.

Example on Trend Analysis

Change in snow clearance date in days/decade

ILMATIETEEN LAITOS METEOROLOGISKA INSTITUTET FINNISH METEOROLOGICAL INSTITUTE

SCAmod-method for Fraction of Snow Cover (FSC) estimation

- Based on a reflectance model with three major reflectance contributors (snow, forest canopy, snow-free ground)
 - An average forest transmissivity must be known for each calculation unit area (estimated from EO-data using SYKE's model)
- No land cover data is needed (except water mask)
 - Method usable for a variety of optical instruments

SCA in Baltic region from MODIS data: 28 March 2007 by operational SYKE SCAmod

NRT-satellite operations by FMI

SCA data assimilated to hydrological model

Reflectance model

$$\rho(SCA) = (1 - t^{2}) * \rho_{forest} + t^{2} \left[SCA * \rho_{snow} + (1 - SCA) * \rho_{ground}\right]$$

$$SCA_{i} = \frac{\frac{1}{\hat{t}_{i^{2}}} * \rho(SCA) + (1 - \frac{1}{\hat{t}_{i^{2}}}) * \rho_{forest} - \rho_{ground}}{\rho_{snow} - \rho_{ground}}$$

 $\rho(SCA)$ ρ_{snow} ρ_{ground} ρ_{forest} SCASCA observed reflectance from unit ar reflectance for wet snow reflectance for snow-free ground reflectance for forest canopy forest canopy transmissivity for u fraction of snow covered area

Forest transmissivity

Forest transmissivity map for 0.01°×0.01° grid:

$$\hat{t}^{2} = \frac{\rho(SCA = 100) - \rho_{forest}}{\rho_{snow} - \rho_{forest}}$$

•How much the canopy blocks the two-way radiation³⁰⁰⁰

•Calculated for each cell 4000 using 4500 optical data at full dry snow 5000 cover conditions

•Nodata for areas without seasonal snow coverage

Northern Hemispherie transmissivity generated from ESA GlobCover data

Fractional Snow Cover maps by SCAmod

SYKE *SCAmod*-method: examples of Fractional snow cover maps on April 2, 2004

Examples of Snowmaps by different optical sensors and algorithms Terra/MODIS SCAmod frac.

Envisat/AATSR SCAmod frac.

NASA Fractional

FSC validation against ground truth (snow courses)

Lumen peittämä ala, Oulujärvi 02.05.2006

Lumen peittämä ala, Oulujärvi 04.05.2006

Lake Oulujärvi 2006

ILMATIETEEN LAITOS METEOROLOGISKA INSTITUTET FINNISH METEOROLOGICAL INSTITUTE

Polar Communications & Weather (PCW)/ PolarSat Mission

2009 pupnik

Canadian Space Agence spatiale Agency canadienne

coreh2o

TO OBSERVE SNOW AND ICE FOR A BETTER UNDERSTANDING OF THE WATER CYCLE

Measurement principle: radar backscatter

Main parameters relevant for snow backscatter:

- Snow water equivalent
- Grain size
- Soil background signal
- Liquid water content (if melting)

Backscatter contributions:

Volume, surface, and interaction terms

$$\sigma^0 = \sigma^{as} + \sigma^v + \sigma^{gv} + \sigma^g$$

User Consultation Meeting, Lisbon, Portugal, 20-21 January 2009

Mission objectives – water cycle and climate

Quantify the amount and variability of fresh water stored in terrestrial snow packs and snow accumulation on glaciers in order to:

- Reduce the uncertainty of snow water storage in regional and global water budgets
- Specify snowmelt and glacier contributions to river discharge modelling and forecasting
- Improve the parameterisation and downscaling of snow and ice processes in regional/global weather and climate models
- Validate the magnitude and feedbacks of snow and ice processes in climate models

User Consultation Meeting, Lisbon, Portugal, 20-21 January 2009

Thank You for Your Attention!