

Sensitivity of Permafrost and Seasonal Freezing Evolution to Regional Simulation of Snow Cover

Tatiana Pavlova, Ekaterina Nadyozhina, Igor Shkolnik and Elena Molkentin

Voeikov Main Geophysical Observatory, St. Petersburg, Russia

MUSCATEN-NetICE workshop, Kuopio, Finland, 24-26 March 2010

MOTIVATION

Permafrost: 25% of the NH's terrestrial surface and more than 60% of that of Russia

Anticipated climate warming may seriously affect permafrost: possibility of permafrost degradation

the permafrost properties are largely constrained by surface air temperature and snow cover.

Our study aims at improving permafrost modelling with regard to snow physics

OUTLINE

1. MGO RCM

- 2. Ground heat transfer model
- 3. Experimental design
- 4. Results
- 5. Summary

1D multilevel ground heat transfer model forced by MGO RCM output

MGO Regional Climate Model

(Shkolnik et al., 2000)

Resolution:

MGO RCM working domains

Western and central Russia

Siberia

Structure of the ground heat transfer model

Upper Boundary Conditions (UBC)

MGO RCM output:

 T_s - skin temperature

 H_s - snow water equivalent

EXPERIMENTAL DESIGN

Previous study: monthly output from MGO RCM for 1991-2000; ρ_s = const = 200 kg m⁻³

Daily output from MGO RCM for 1991-2000

1. Snow density ρ_s = const = 200 kg m⁻³

2. Snow density $\rho_s = f(t)$ $\rho_s(t + \Delta t) = [\rho_s(t) - \rho_{s \max}] \exp(-0.24\Delta t/\tau) + \rho_{s \max}$ $\rho_{s \min} = 100 \text{ kg m}^{-3}, \qquad \rho_{s \max} = 300 \text{ kg m}^{-3},$ Δt —time step, $\tau = 86400 \text{ s}.$

[Mocko and Sud, 2001]

3.Snow heat conductivity $\lambda_s = f(\rho_s)$ $\lambda_s = \lambda_0 (\rho_s/\rho_a)^{-1.88}$ where $\lambda_0 = 2.22 \text{ W m}^{-1} \text{ K}^{-1}$, $\rho_a = 1000 \text{ kg m}^{-1}$.

[Mocko and Sud, 2001]

Long-term mean annual number of days with snow cover

Symbols -the data derived from [Groisman et al., J.Clim.,2006]

Shading – simulated by RCM for 1991-2000

Long-term mean annual number of days with snow cover

Comparison with the data from [Climate of Russia.,2001]

Lines : observations Color of shadings : MGO RCM

Duration of snow-free period

MGO RCM

Satellite data* [1972-2000]

56-126 days
127-196 days
197-259 days

*[Dye and Tucker, 2003]

Snow cover depth (cm) in the end of February 1991-2000 for various snow density settings

VOEIKOV MAIN GEOPHYSICAL OBSERVATORY

ρ=200 kg m⁻³

ρ=400 kg m⁻³

Ground temperature (deg C) at 1.6m depth differences for 1991-2000 VOELKOV due to various snow density settings

Active layer depth (cm) differences due to various snow density settings

August

The differences between the active layer depths simulated by ρ_s =const and ρ_s =f(t) for 1991-2000

dashed line – observed permafrost zone boundary 1, 5, 8 – climatic regions [*Groisman et al., 2006*] Inter-annual variability of the snow depth (hs) and snow duration various climatic regions (1, 5, 8) and for various settings of the snow density (ρ_s) in comparison with summer temperature sums evolution.

years	h₅ in February (cm) ρ₅ ≠ const ρ₅ =200 kg· m ⁻³						Summer air temperature sums			vears	Number of days with snow		
	Region			Region			Region				Region		
	1	5	8	1	5	8	1	5	8		1	5	8
1991	37	39	39	54	58	58	40.4	47.5	52.9	1991-92	263	203	233
1992	40	32	32	59	48	47	34.9	40.6	53.3	1992-93	267	200	226
1993	32	52	40	48	78	61	37.5	52.4	52.3	1993-94	269	193	232
1994	39	35	33	51	52	49	36.8	44.7	53.4	1994-95	268	200	233
1995	38	41	39	51	62	59	35.1	39.1	50.9	1995-96	268	196	236
1996	41	42	42	54	63	61	37.1	43.2	53.5	1996-97	266	192	235
1997	40	41	38	53	61	56	40.7	47.9	55.9	1997-98	266	195	230
1998	39	4	37	56	65	54	40.3	49.6	58.0	1998-99	262	190	227
1999	39	36	35	55	54	51	40.4	50.7	53.4	1999-2000	264	197	230
2000	33	42	32	47	63	47	39.0	45.5	54.4				
mean	38	40	40 37	52	60	54	20.2	45.0	52.0	ave.mod	266	196	231
				57	55	00	00 54	50.2	40.9	53.0	ave.obs	245	186

Seasonal thawing/freezing depths (cm) as projected by the end of 21st century (2091-2100) relative to the late 20th century

Monthly mean climate forcing ρ_s = const

Seasonal thawing area

Seasonal freezing area

Daily mean climate forcing $\rho_s = f(t)$

MGO Regional Climate Model

(Shkolnik et al., 2000)

Resolution:

Three MGO RCM working domains (25 km resolution)

Europe

Western and central Russia

Siberia

Summary

The scenario of changes by the end of 21st century in permafrost and thawing/freezing depths largely depends on snow density parameterization.

Further research is needed in order to address changes in the cryosphere within the context of RCM ensemble simulations for permafrost regions;

Coordination of RCM + Permafrost Model efforts over the northern Eurasia is appreciated under umbrella of large projects/programs (CORDEX, CAPER, NEESPI)