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Outline

 Key snow processes 

 Main characteristics of Crocus, a detailed snow model

 Some applications:
– Safran/Crocus/Mepra : snow monitoring in the Alps and the Pyrenees for 

operational avalanche forecasting
– Impact of climate change on snowcover and hydrology
– A research project for modeling snow deposition on roads

 Future developments and open issues for NWP 
  and climate projections
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Description of an “idealized” snowcover

in open land areas

Liquid Water 
Content
(0-10%m /saturation)

+ impurities: dust, vegetation debris, chemical species ... 

S
no

w
 D

ep
th

Temperature
(<= 0°C.)

-30           -20          -10         0

Snow microstructure: 
- crystals shape, size
 grains (bounded crystals)

Dry Density
(20 to 917
 kg/m3)

600           400          200         0
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Physical internal processes controlling

mass and energy exchanges (1/2)

Thermal diffusion : low conductivity function of density and
          microstructure – low capacity (density, T)

Water flow : * permeability function of density, microstructure 
                     * capillarity forces function of microstructure and   
                               density  irreducible water content

* capillarity barriers  saturated layers

Phase Changes : melting-freezing:  
- macro: melting point function of impurities/chem.

                                - micro : wet snow metamorphism
                             sublimation/condensation:

- dry snow metamorphism
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Physical internal processes controlling

mass and energy exchanges (2/2)

Compaction : Newtonian viscosity function of density,   
  temperature, microstructure , liquid water content,

                        metamorphism

Light penetration: function of microstructure , 
                               density and impurities content

Air flow : occasionally under pressure variations (wind pumping)
        and thermal convection 

most physical properties vary over a range 
larger than one order of magnitude
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Snow metamorphism

Strong influence on albedo,
light penetration, viscosity, 
conduction, water flow 

Weak temperature gradient
(0 to 5 °C./m)

Medium temperature gradient
(5 to 15 °C./m)

High temperature gradient
(> 15 °C./m)

Wet conditions
(LWC > 1% mass)
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Main external processes controlling

snow pack evolution

Radiative balance (short and long-wave)

turbulent fluxes (sensible and latent heat)   and snow drift

Snow /rain precipitation

Temperature

Density

Liquid Water 
content

Snow grains

Ground thermal flux
run-off



8
Crocus: a detailed snow model

designed for snowpack monitoring 

Simulated processes: 
-Thermal diffusion, Phase changes , Compaction 
- Spectral albedo, Light penetration, Water flow, Water retention 
- Metamorphism 
- Dynamic evolution of the number and thickness of numerical layers
- Snow/soil thermal and liquid fluxes 

Snowcover state variables:
- Temperature, Density, Liquid water content, Grains type and size, Age

Forcing data: 
- Incoming short-wave (3 bands) and long-wave radiation 
- Snow-rain precipitation
- Air temperature and humidity
- Wind velocity 

            Main limitations: 1-D model, no blowing snow
                                no vegetation, no air flow
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An example of a simulated density using 

observed forcing data (Col de Porte, 1320 m a.s.l)

Sn
ow

 D
ep

th
 (c

m
)

Winter season 2005-2006

Nov. 1st      Dec. 1st       Jan. 1st           Feb. 1st          Mar. 1st        Apr. 1st       May. 1st

Density(kg/m3)

(ISBA-ES/Crocus
with V. Vionnet)
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An example of a simulated layering

from observed forcing data 

Sn
ow

 D
ep

th
 (c

m
)

Winter season 2005-2006

Nov. 1st      Dec. 1st       Jan. 1st           Feb. 1st          Mar. 1st        Apr. 1st       May. 1st

(ISBA-ES/Crocus
from V. Vionnet)
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Model evaluation on an instrumented site

Col de Porte, French Alps 1320m a.s.l

(Brun et al., 1989, 1992)
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Model evaluation on an instrumented site

Col de Porte, French Alps 1320m a.s.l

(Brun et al., 1989, 1992)



13
Application to snowcover monitoring

and avalanches forecasting

Safran/Crocus/Mepra:

– Snowpack real-time modeling in the Alps, the 
Pyrenees and Corsica

– Use of analyzed and forecasted forcing data
hindcast : H0-24 to H0 and forecast: H0 to H0 +48

– Stability diagnosis from simulated snow profiles
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real-time 
SAFRAN analysis

Remote-sensing

Snow-Avalanche
 human network Mountain AWS

(Durand et al., 1992)

 SAFRAN : an analysis system designed for mountains

NWP outputs

Analysis of past weather conditions :
•Temperature and humidity
•Wind velocity
•Incoming radiative fluxes
•Precipitation (snow/rain)

On different elevations and aspects
Hourly time step
French Alps, Pyrenees and Corsica

No use of snow depth observations!
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Application impact studies of

climate change on snow cover

– A case study on an instrumented site

– Extension to the Alps and Pyrenees

– A case study on an alpine river

– A case study on an alpine glacier
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Physically-based simulation of the impact of climate warming 

(temperature and long-wave radiation)

(E. Brun, 1991)

Date

+ 4.5 °C.+ 1.5 °C. + 3 °C.

Simulated snow depth at  Col de Porte

Air temperature anomaly:
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w
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th

 (c
m

)
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Impact of a temperature increase of 1.8°C.  
on the duration of snowcover at 1500 m a.s.l

Northern 
French Alps

Very sensitive up to 2200m a.s.l
(PhD Work E. Martin, 1994)

(1981-1991) / (1981-1991)

Southern 
French Alps

Present climate
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The impact on an Alpine river

3 weeks earlier

(P. Etchevers, 1997)

Observed discharge (present climate)

Simulated discharge (present climate)

Simulated discharge
for a doubling CO2 scenario
With different models
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Impact on an Alpine glacier 

Average mass balance
 1981-2004

Model output

M.Gerbaux (PhD Work, 2005) et E. Le Meur 
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Impact on an alpine glacier/ Validation (1/2) 

From M.Gerbaux (PhD work, 2005) 

and E. Le Meur 
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Degree-Day Model (Vincent, 2002)
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Observations
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Impact on an Alpine glacier/ Evaluation (2/2) 

From M.Gerbaux (PhD Work, 2005) and E. Le 
Meur 

30 September 1997
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Impact on Glacier de Saint-Sorlin (scenario B1)

2000 2030

2060 2092

M.Gerbaux (PhD Work, 2005) and E. Le Meur 
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Two positive feedbacks contributing

to this extreme sensitivity (1/2) 

- a feedback due to the decrease of snow albedo by wet metamorphism

Surface melting  wet snow metamorphism 
                           decrease of snow albedo 
                           melt rate increase

A few hours A few days
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Surface melting  some impurities are retained at the surface   
                           decrease of the albedo 
                           melt rate increase

- a feedback due to the decrease of snow albedo by the concentration of impurities

Two positive feedbacks contributing
to this extreme sensitivity (2/2) 



27
A research project for modeling

snow deposition on roads

– Experimentation on instrumented pavements

– Characterization of snow/pavement properties

– Coupling of Crocus with a pavement model

 an original model for future operational applications
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Instrumentation of experimental pavements

6 different pavement samples 
corresponding  to the main types 
which are used in France

(Col de Porte, 1320m a.s.l)
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Documentation of 50 snowfalls

Detailed temperature profile,
liquid saturation, ...

Extraction of snow/pavement samples

Characterization of their properties:
thermal resistance of the interface

(PhD work, S. Borel, 1999)
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Dependency on the type of roads
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A coupled model for future applications

Snow

Road structure

Snow-road
interface

Temperature

    < 0°C.           0°C.        >  0°C.

(Ludovic Bouilloud, PhD work, 2006)
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Which kind of snow model 

for NWP and Earth System models ?

 3 classes of snow models in use at Météo-France in SURFEX

– D95 and EBA: single-layer snow-soil composite model
       climate models and NWP

– ISBA-ES : multi-layer snow model including:
•  thermal diffusion, water flow, phase changes, light penetration,

compaction, snow/soil thermal fluxes when coupled to “DIFF”
• Invariable number of snow layers (3 to ...)
 process studies and hydrology

– Crocus now based on ISBA-ES + :
• dynamical layering (layers number and depths are variable) 
• metamorphism and snow age 
• albedo function of snow grains and age
• wind compaction (yet only snow drift effects  blowing snow (PhD V. Vionnet))

  process studies, avalanche forecast, climate impact and hydrology
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Towards increasing complexity ?  

 Snow and vegetation: a difficult problem 
 very important for climate simulations
 more and more challenging for high-resolution NWP

Picture from the Arctic Research Centre (FMI) Web site

Major challenges at the 
grid point scale (Patrick’s talk):
-Albedo
-Atmosphere/ Snow/ Soil fluxes

1 : double energy balance with
a simple snow model (Stefan)

At least 2 “Surfex” patches:

2 : energy balance with
ISBA-ES, fraction=1
and deep soil (Aaron)
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Importance of deep soil and snow fraction  
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A new challenge for NWP: assimilation of 

Infra-Red sounders (IASI) over snow covered areas

 Very sensitive to surface temperature (1-2°C. !) 

 Accurate resolving of the diurnal cycle is critical

 Concordiasi : an ongoing IPY research project focusing on IASI 

assimilation over the Antarctic Plateau (Concordia base at Dome C)

THORPEX-IPY

http://www.cnrm.meteo.fr/concordiasi/
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Dome C: a very convenient site

to study snow-atmosphere interactions

BSRN radiation station  (ISAC-CNR)
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Good performance of detailed snow models ... 

Input data from BSRN (ISAC-CNR) and LGGE

2010 January 20th. to 31st

Offline simulation ISBA_ES/Crocus
Observation from emitted LW

http://www.institut-polaire.fr/
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Deep temperature simulation
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... but limited performance of NWP forecasts ...

Operational ARPEGE output
Observation from emitted LW

atmospheric problems?
snow scheme problems?
coupling problems ?
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... despite reasonable results when forcing a 
detailed model with forcing data from NWP !

Improvements to be expected from an evolution of
 snow schemes in NWP models

A balance to be found between computing costs,
realistic physics and snow cover initialization issues

Offline simulation ISBA_ES/Crocus with ARPEGE forcing
Observation from emitted LW
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Importance of some specific processes

Very important process at the beginning of the melting-season! 
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With AROME/HARMONIE and ISBA-ES/CROCUS !
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