SURFEX Snow Schemes

Aaron Boone
Contributions from B. Decharme, H. Douville, E. Bazile, E. Brun, E. Martin, P. Lemoigne…..
CNRS and Météo-France, Toulouse

Scientific documentation
User’s guide
Announcements

www.cnrm.meteo.fr/surfex/
SURFEX Snow Schemes

SURFEX is a « surface externalisée » → Externalised Surface

SURFEX is a surface code as autonomous as possible, which can be run in a coupled mode with a meteorological model, or in a stand alone mode.

SURFEX is designed as a modular scheme that can incorporate various parameterisations.

SURFEX is expected be used in various applications, through existing and future collaborations on operational numerical weather predictions, climate research (next IPCC)… and improve for the benefit of all.
Why do we need externalised surface codes?

- The aim of a surface code is to simulate the fluxes between the surface and the atmosphere: energy, water, carbon, dust, snow, chemical species...
- The surface code needs to simulate processes « below » or « inside » the surface to provide the fluxes.
- Surface codes are improved and validated offline, many works on surface processes are done by people not belonging to the meteorological or climatological communities.
- The use of the same code for coupled and offline application is mandatory in order to ensure the coherency between the two applications.
- Need to externalise the surface code of the atmospheric model. I.e. clearly separate them from other part of the code in order to run them in stand alone mode.
SURFEX Snow Schemes

Sea and oceans:
- Prescribed SST, Charnock formula
- Mondon and Redelsperger
- ECUME (multicampaign parametrisation)
- 1D ocean model

Lakes:
- Prescribed surface temperatures, Charnock formula
- FLake

Soil/Vegetation/Snow: ISBA
(Interaction Soil Biosphere Atmosphere)

Town: TEB (Town Energy Balance)
- Canyon Approach
- Detailed radiative scheme
- Heat storage in buildings

March 23-25, Kuopio, Finland
SURFEX Snow Schemes

- The surface is divided into 4 main **Tiles**, which are treated by different models.

- The tile **Nature** is divided into 12 **patches** or natural functional types.

- **Fluxes** from all (1-12) tiles aggregated to a single land surface flux.

* Snow can occur in each patch.

<table>
<thead>
<tr>
<th>Nature (bare soil/vegetation)</th>
<th>Towns</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sea/Oceans</td>
<td></td>
</tr>
<tr>
<td>Lakes</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nature</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO</td>
<td>no vegetation</td>
</tr>
<tr>
<td>ROCK (bare rock)</td>
<td>C3 (C3 crops)</td>
</tr>
<tr>
<td>SNOW (snow and ice)</td>
<td>IRR (irrigated crops)</td>
</tr>
<tr>
<td>TREE (deciduous broadleaved forest)</td>
<td>GRAS (temperate /C3 grassland)</td>
</tr>
<tr>
<td>CONI (evergreen needleleaved forest)</td>
<td>TROG (tropical /C4 grassland)</td>
</tr>
<tr>
<td>EVER (evergreen broadleaved forest)</td>
<td>PARK (wetlands)</td>
</tr>
</tbody>
</table>
SURFEX Snow Schemes

\[F = f_n F_n + f_l F_l + f_t F_t + f_s F_s \]

interface

- radiative properties:
 - albedo
 - emissivity
 - surface radiative temperature

- surface fluxes:
 - momentum
 - sensible heat
 - latent heat
 - CO2
 - chemical species
 - aerosols

atmospheric forcing:
- air temperature
- specific humidity
- wind components
- pressure
- rain rate
- snow rate
- CO2, chemical species, aerosols concentration

radiative forcing:
- solar radiation
- infrared radiation

SURFEX

surface

nature --- lake --- town --- sea

\[F_n \quad F_l \quad F_t \quad F_s \]

\[f_n \quad f_l \quad f_t \quad f_s \]
SURFEX Snow Schemes

Cold Season Processes (used with CSOIL=2-L, 3-L, DIF)

A) Soil Phase changes: CSOILFRZ=
 - i) Phase changes based on water content (DEF)
 - ii) Phase changes based on water content and temperature (LWT)

B) Snowpack: CSNOW=
 - i) Single-layer bulk snow (EBA)
 - ii) Composite snow (DEF)
 - iii) Explicit Snow (3-L)

C) Soil heat Transfer (CSOIL=DIF)

 Soil Thermal conductivity includes ice explicitly
 CSCOND=PL98 (default NP89)

- DEF or RIL Rich. Number limit

iv) Explicit Snow – CROCUS (under development!)
SURFEX Snow Schemes

Soil Scheme Options

Comparison: 2 force restore soil options verses DIFusion grid (Richards Eq, Heat Diffusion)
SURFEX Snow Schemes

Soil Thermal conductivity: CSCOND NP89: based on McCumber and Pielke (used implicitly in FR option)
- no explicit accounting for soil ice

PL98: Peters-Lidard: shown to be more accurate for dry and wet soils, and includes soil ice.
- lower thermal wave penetration for wetter soils

- ice thermal conductivity $\Rightarrow 2.22 \ (W \ m^{-1}K^{-1})$
Phase Changes in the Soil: CSOILFRZ=DEF option

The freeze/thaw rates are proportional to the temperature depression and the available liquid/ice.

\[\Phi_{fj} = \min \left[K_s \epsilon_f \max (0, T_f - T_j) c_i, \right. \]
\[\left. L_f \rho_w \max (0, w_{lj} - w_{min}) \right] / \tau_i \]

\[\Phi_{mj} = \min \left[K_s \epsilon_m \max (0, T_j - T_f) c_i, L_f \rho_w w_{ij} \right] / \tau_i \]

\[\epsilon_j = \begin{cases}
 w_{lj} / (w_{sat} - w_{ij}) & (T_j \leq T_f) \\
 w_{ij} / (w_{sat} - w_{min}) & (T_j > T_f)
\end{cases} \]

\[K_s = \left(1 - \frac{veg}{K_2} \right) \left(1 - \frac{LAI}{K_3} \right) \quad (0 < K_s \leq 1) \]

Rate of freeze thaw a function of efficiency and vegetation (Bazile)
From Gibbs free energy concept:

\[\psi^* = \frac{L_f (T - T_f)}{g T} \]

And Clapp and Hornberger, we get:

\[w_{l \text{max}} = w_{\text{sat}} \left(\frac{\psi^*}{\psi_{\text{sat}}} \right)^{-1/b} \]

\[T_{\text{max}} = \frac{L_f T_f}{L_f - g \psi} \]

Example for Goose Bay, Canada...lower panel efficiency set to unity. All 5 soil layers shown together. For a winter season.
SURFEX Snow Schemes

Snow scheme options: CSNOW

EBA - Bazile composite scheme, 3 prognostic variables NWP usage and improved fcst scores

DEF - Douville composite scheme, 3 prognostic variables Extensive use in offline and GCM

3-L - Boone (ISBA-ES: Explicit Snow), 4 prognostic variables (3-N layer variables, 1 single layer var)
Offline and Mesoscale modelling, operational Hydro

* ISBA-ES: Ongoing developments: new modifications with snow grain variables, history variables, 10 layers....coupling with vegetation canopy
SURFEX Snow Schemes

DEF - Composite snow scheme
EBA - Composite (density only used to compute diagnostics)

\[
\frac{\partial W_n}{\partial t} = P_n - E_n - F_n
\]

\[
\frac{\partial \rho_n}{\partial t} = \frac{\tau_f}{\tau} (\rho_{\text{max}} - \rho_n)
\]

\[
\frac{\partial \alpha_n}{\partial t} = \frac{-1}{\tau} \left[\delta_\alpha \tau_f (\alpha_n - \alpha_{\text{min}}) + (1 - \delta_\alpha) \tau_a \right] + \frac{P_n}{W_{crn}}
\]

(\(\rho_{\text{min}} \leq \rho_n \leq \rho_{\text{max}}\))

(\(\alpha_{\text{min}} \leq \alpha_n \leq \alpha_{\text{max}}\))

More details on differences ➔ talk by E. Bazile

Comoposite=
Single soil-vegetation-snow energy budget
SURFEX Snow Schemes

Albedo scheme in all 3 model options
SURFEX Snow Schemes

ARPEGE MARCH 2000
Ts +96h - Ts Analysis

Impact of new albedo, snow fraction

Figure 5: Impact of the new scheme on the T_{zm} 96h forecast (averaged on the 15 runs).

From E. Bazile, GMAP

Muscaten Workshop, March 23-25, Kuopio, Finland
SURFEX Snow Schemes

Sub-grid snow cover?

Washington DC, Feb 2010
Default snow fraction for baresoil (p_{ng}) for all models, p_{nv} used for 3-L and DEF (EBA based on LAI and age also, results in significantly improved T2m air temperatures over Northern Hemisphere)

$\begin{align*}
 p_{ng} &= W_n / (W_n + W_{crn}) \\
 p_{nv} &= h_n / (h_n + 5z_0) \\
 p_n &= veg p_{nv} + (1 - veg) p_{ng} \\

 (W_{crn} = 10 \text{ kg m}^2)
\end{align*}$

TOTAL snow cover fraction

* Loosely physically based...mostly empirical...but...rather standard! Future developments may include topographic index/exposition, improvements using satellite-based data...
SURFEX Snow Schemes

Basic ideas: cover bare-ground faster...and taller vegetation with lower pnv
SURFEX Snow Schemes

3-L: ISBA-ES is more detailed:
- an N-layer scheme (default 3), 4 prognostic variables
- explicit compaction (and melt densification)
- radiative transfer
- explicit energy budget: prognostic vars = albedo, density, SWE and H
- liquid water content (using enthalpy concept)

\[
H_{si} = c_{si} D_{si} (T_{si} - T_f) - L_f (W_{si} - W_{li})
\]

2 “prognostic” variables “for the price of one”...

\[
T_{si} = T_f + \frac{(H_{si} + L_f W_{si})}{(c_{si} D_{si})} \quad (W_{li} = 0)
\]

\[
W_{li} = W_{si} + \frac{H_{si}}{L_f} \quad (T_{si} = T_f)
\]
SURFEX Snow Schemes

3-L - Explicit snow scheme: 4 prognostic variables
(N-layers, default=3, have used 10...)

\[
\frac{\partial W_s}{\partial t} = (P_n + P_{rn} - R_l N - E_n)
\]

\[
\frac{1}{\rho_{si}} \frac{\partial \rho_{si}}{\partial t} = \frac{\sigma_{si}}{\eta_{si} (T_{si}, \rho_{si})} + a_{sc} \exp \left[-b_{sc} (T_f - T_{si}) - c_{sc} \max(0, \rho_{si} - \rho_{sc})\right]
\]

\[
H \left[c_{si} D_{si} \frac{\partial T_{si}}{\partial t} = G_{si-1} - G_{si} - F_{si} \right]
\]

\[
\frac{\partial W_{li}}{\partial t} = R_{li-1} - R_{li} + F_{si} / L_f \quad (W_{li} \leq W_{li_{max}})
\]

*Separate Explicit Snow Energy Budget:
Snow scheme ONLY called where snow is falling or where is exists already

Plus the same albedo Eq
\[
\frac{1}{C_T} \frac{\partial T_s}{\partial t} = (1 - p_n) \left[R_g (1 - \alpha) + \epsilon (R_{at} - \sigma T_s^4) - H - LE \right] \\
+ p_n \left[J_s N + Q_s N + c_w R_{l N} (T_f - T_s) \right] \\
- \frac{2\pi}{\tau C_T} (T_s - T_2) + L_f F_{sw}
\]
\[
\frac{1}{C_T} \frac{\partial T_s}{\partial t} = (1 - p_n) \left[R_g (1 - \alpha) + \epsilon (R_{at} - \sigma T_s^4) - H - LE \right] \\
+ p_n \left[J_{SN} + Q_{SN} + c_w R_{LN} (T_f - T_s) \right] \\
- \frac{2\pi}{\tau C_T} (T_s - T_2) + L_f F_{sw}
\]
SURFEX Snow Schemes

Time varying layer thicknesses

Total snowpack mass and energy conserved as grid changes in t
SURFEX Snow Schemes

Grid and numerical setup essentially the same as for the soil heat diffusion Equation (DIF)
Richardson number limit options (CSNOWRES=RIL) for snow 3-L

- during very stable conditions, decoupling from the atmosphere can lead to very cold surface snow temperatures. Fix from ARPEGE....

\[C_H = \left[\frac{k^2}{\ln (z_u/z_0t) \ln (z_a/z_0t)} \right] f(R_i) \]
Example using RIL:

Impact of Using RIL option (with Richmax=0.20) at Col de Porte for 3 years. Good improvement...also impacts melting.
3-L physics summary

Alot based on Anderson (1976) and CROCUS
SURFEX Snow Schemes

ISBA-ES

Off-line simulation for Col de Porte (1994-95)

Observed SWE, Depth

Using default 3L configuration
Profile – Simulations for Col de Porte

• Annual cycle
• by Eric Brun, using ISBA-ES with 10 layers (addtion by V. Vionnet)
SURFEX Snow Schemes

Global Scale Simulation from 1986-2006 (ISBA-Offline, D95)

Forcing input: Princeton Forcing
• Based on NCAR-NCEP reanalysis
• Precip: gridded obs+TRMM…
• hybridized ➔ monthly precip totals match GPCC-V4)

Evaluation:
• NSIDC ➔ Satellite based, 1x1 degree product

From Alkama et al., 2010

Muscaten Workshop, March 23-25, Kuopio, Finland
Coupled GCM snow simulation

ARPEGE-Clim using Forced SSTs (Stéphane Sénési)

Climatological bias (1970-1999) of simulated snow (D95) cover (vs NSIDC) and T2M (vs CRU)
SURFEX Snow Schemes

Operational SIM
SAFRAN
ISBA
MODCOU
8 km res

Fraction de maille couverte de neige au 21/03/2010

Analyse ISBA du 22/03/2010

Muscaten Workshop, March 23-25, Kuopio, Finland
SURFEX Snow Schemes

Average snow depth for 24 sites in the Alps from the Rhone-AGG Exp.
SURFEX Snow Schemes

Summary
- 3 different models (approaches currently available)
- All can be used in offline mode currently, or with explicit fluxes (MesoNH or AROME)
- Ongoing evaluation/validation/development (NWP, GCM, Global or Regional Offline, hydrological, local scale….) Contributions?

Perspectives
- CROCUS in SURFEX (for detailed snow process studies), using code (when possible) and methodology of ISBA-ES
- Implicit coupling (ISBA-ES, then CORCUS)
- Still need work on sub-grid parameterizations !!!
- Explicit vegetation Canopy (See Gollvik talk) ➔
SURFEX Snow Schemes

SNOWMIP2

R. Essery (in this very room!)
N. Rutteri and *many* colleagues!

ISBA-ES, 3layers

• Problem with representation of canopy interactions (lack thereof)

New Canopy ➔ with Samuelsson, Gollvik, Lemoigne, Martin et al.
SURFEX Snow Schemes

Contact:
Aaron Boone, Eric Martin
Eric Brun, Vincent Vionnet, Eric Bazile, Hervé Douville (snow),
Bertrand Decharme (soil, hydrology)

SURFEX:
Eric Martin, Patrick LeMoigne, Stephanie Faroux

GAME-CNRM Météo-France
GAME-CNRM