

The role of PBL in air quality modelling: experience of SILAM

M.Sofiev & SILAM team Finnish Meteorological Insitute University of Helsinki University of Tartu



Content

- What is the air quality (AQ) modelling?
 - ➤ sources, species, tasks
 - chemical composition modelling
 - PBL: the main environment for Chemical Transport Models (CTMs)
- CTM as specific user of meteorological (or numerical weather prediction, NWP) models
- Coupling NWP and CTM models: towards Chemical Weather models
- Examples
- Summary

Air pollution due to anthropogenic emission

Air quality vs chemical composition modelling

- Air quality regards to atmospheric chemical composition near the surface and reaction of people and ecosystems onto it
- Chemical composition regards to the whole atmosphere and does not have an object of impact (such as human being)
- AQ is a relative characteristic related to thresholds, target levels, and guidelines set by users – public, health authorities, etc.
- Conclusion: AQ modelling is a specific application of a Chemical Transport Model (CTM) for the needs of public health protection

Chemical composition: areas of interest

- Anthropogenic species are mostly confined within the boundary layer but:
 - long-living species (toxic metals, persistent organic compounds, etc.) generally up to tropopause
 - buoyant sources wild-land fires (natural / man-made), major technogenic disasters, ... – up to tropopause
 - > aviation: a major contributor of anthropogenic species in the upper troposphere
- Natural sources: a rich zoo
 - > near-surface: biogenic organic compounds, sea salt, pollen, dust, ...
 - > lightning as the main NO_2 producer in tropics in the upper troposphere
 - stratospheric ozone
- Spatial and temporal scales vary widely depending on the problem
 - > determine the main chemistry mechanism and impact
- A "single-atmosphere" principle: all-in-one.
 - > interactions
 - > in extremes, brain-free implementation

Chemical composition vs meteorological modelling

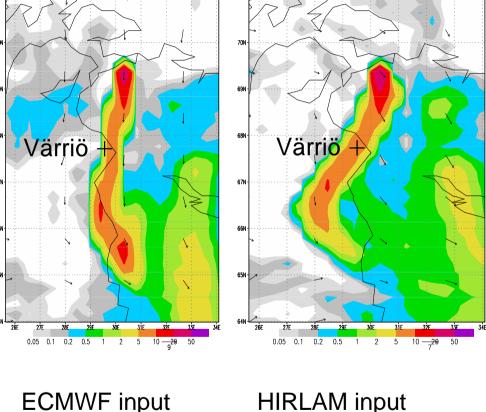
- Chemical Transport Modelling (CTM) is often considered (with reasons) as a downstream to meteorological modelling
 - 4-D meteorological fields are the main part of the CTM input, being largely independent from chemical composition
- Feedback to meteorology exists and can be significant
 - > direct: radiation propagation through aerosol layers
 - semi-direct: cloud properties through altered radiation
 - indirect: cloud processes affected by aerosols through microphysics
 - > playing by mass: e.g. Saharan dust storms strongly affect nearly all tropospheric features in the region

Focus of the talk: meso-to-regional CTM

- Meso- and regional spatial scales (many definitions)
 - > spatial horizontal resolution from 1km to 50km
 - horizontal coverage up to Europe and surroundings
- Other parameters follow
 - vertical coverage: troposphere
 - vertical resolution: stress to PBL
 - time scale: hours to months (years/decades for long-term trends)
 - > species
 - basic acid and nutrient chemistry (SO_x, NO_x, NH_x)
 - aerosols and related physics and chemistry
 - allergenic species (pollen)
 - tropospheric ozone O_3 and hydrocarbon chemistry

Content

- What is the air quality (AQ) modelling?
- CTM as specific user of meteorological (or numerical weather prediction, NWP) models
 - basic formulations
 - driving parameters
 - information flow from NWP
 - atmospheric features through prism of NWP model
- Coupling NWP and CTM models: towards Chemical Weather models
- Examples
- Summary


Textbook: dispersion equation

$$L\mathbf{j} = \frac{\partial \mathbf{j}}{\partial t} + \frac{\partial}{\partial x_i} (u_i \mathbf{j}) - \frac{\partial}{\partial x_i} \mathbf{m}_i \frac{\partial \mathbf{j}}{\partial x_i} + \mathbf{s}(\mathbf{j}) = f$$

advect. diffusion sink source
$$\mathbf{j}(t=0) = \mathbf{j}_0(\vec{x}); \quad \mathbf{j}(\vec{x}=\partial\Omega) = \mathbf{j}_b(\vec{x},t)$$

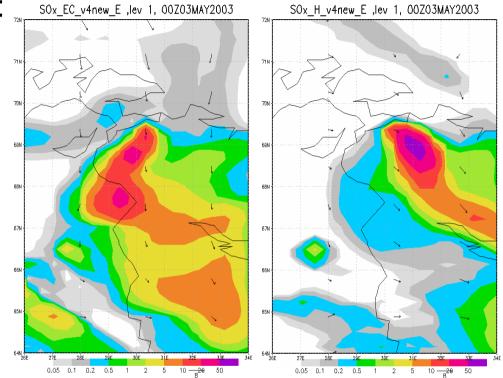
- Just one equation!
 - devil in details: it is multi-dimensional (φ is vector), "sink" term is non-linear and can result in mass transfer between the φ components (chemistry)
- Meteorology drives all terms
 - list of input variables depends on task
 - sensitivity to meteo variables is different
 - CTM can be sensitive to "unimportant" NWP variable
 - "unimportant" ≈ "non-verified"

A crucial parameter: 3D wind

- Drives the always dominating advection term
- Subject to divergence problem (see next section)
- Fairly well verified on a routine basis
 - speed verification is probably more strict
 - direction is much more important for CTM

a)S04 concentration, ug/m3, 00Z03MAY2003

ECMWF inputHIRLAM inputSILAM, Lagrangian dynamics, SO_4 in air,ug S /m3, 00:00 3.5.2003

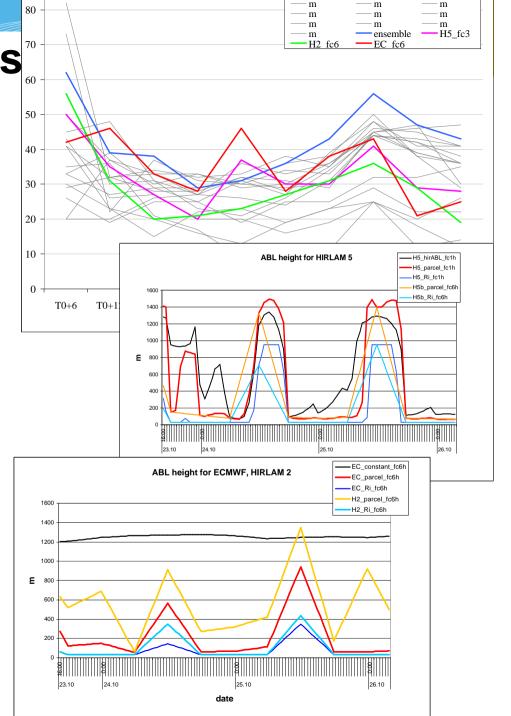


b)S04 concentration, ug/m3, 00Z03MAY2003

A crucial parameter: 3D wind (2)

- Vertical wind component: drives the all-dominating advection term
- Very sensitive to divergence problem (see next section) and interfacing methodology
- Poorly verified

ECMWF input HIRLAM input SILAM, Eulerian dynamics, SO_4 in air, ug S /m3, 00:00 3.5.2003


Mixing characteristics

- Drive the diffusion term
 - > spread of the plume
 - vertical diffusion also via wind turn with height
 - deposition characteristics
 - moderate sensitivity of CTM
- Diagnostic set of variables, practically non-verified in NWP routine
 - participates in generation of diagnosed screen-level variables
 - > otherwise is not interesting for "normal" users of weather forecast
 - rarely available from archives
- Most of CTMs (re-)create the whole set using basic profiles and own methodologies (see next section)

Mixing characteristics

- European Tracer experiment
 - actual release of passive tracer, 23.10.1994, western France
 - careful monitoring of the cloud in its way over Europe
- SILAM played with 3 NWP datasets:
 - HIRLAM v2, 0.25⁰, 1 hr
 - HIRLAM v5, 0.5⁰, 6 hr
 - ECMWF from archive, 0.75°,
 6 hr
- No major difference, EC-run is the best up to +30 hr
 - wrong ABL during release night in HIRLAM: contributed?

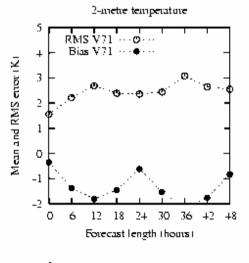
NWP for source term: pollen

- Pollen is released from vegetation during flowering and constitutes the main part of spring allergenic outbreaks
- In many cases, acceptable accuracy for flowering prediction is obtained from thermal-sum models

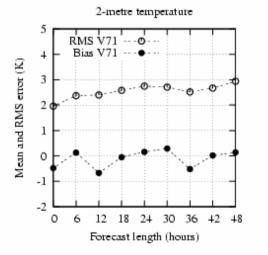
$$HS = \int_{t=t_0}^{t_{flowering}} (T(t) - T_{cutoff}) 1(T(t) - T_{cutoff}) dt$$

flowering : $HS \ge HS_{threshold}(x, y)$

- Integration (or summation of daily/hourly means) of temperature starts early in spring and continues until the flowering starts
 - > prone to huge errors in case of temperature bias



NWP for source term: pollen (2)


- Spring 2007
 - FMI pollen forecasts: OK in most of Europe, hopelessly late in northern parts
 - Reason: bug in new HIRLAM v.7.1, combined with general HIRLAM feature of cold bias in spring

Verification against observations EXP: V71 Time: 2007040100 - 2007043018 Domain: Scn Forecast from 00

Verification against observations EXP: V71 Time: 2007040100 - 2007043018 Domain: Fra Forecast from 00

T2m comparison: Scandinavia

France

NWP for source: wind-induced emission

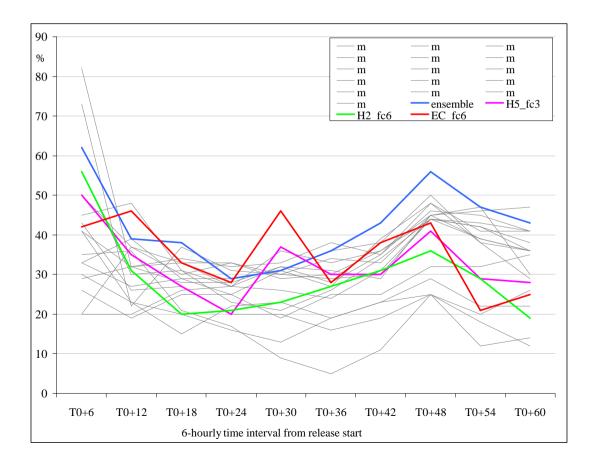
- Two main components are wind-induced
 - ➤ sea salt

 $E_{sea_salt}(U_{10m}, T_w, S_w, d_{part}, \Delta d) = W(U_{10m}) F_1(T_w, S_w, d_{part}, \Delta d)$ $W = 3.84 * 10^{-6} U_{10m}^{3.41} \quad \text{(Monahan et al, 1986)}$

dust (Gillette et al, 1988)

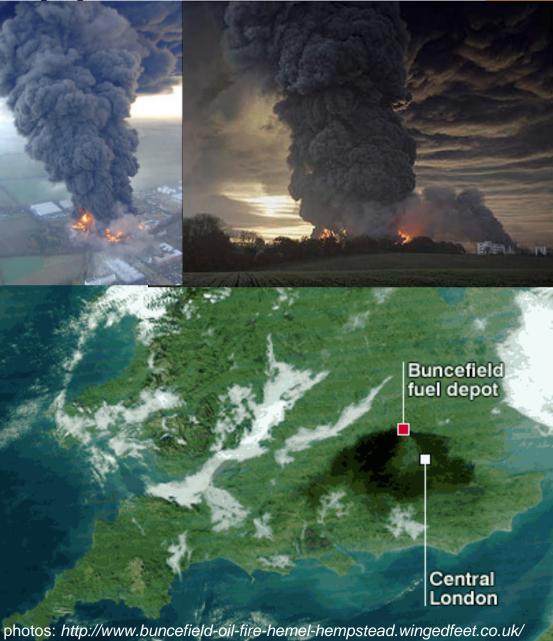
$$E_{dust} = C \ u_*^4 \ (1 - u_{*_{cutoff}} / u_*) \ 1(u_* - u_{*_{cutoff}})$$

• Enormous sensitivity to low-level wind

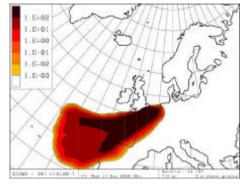

NWP-CTM: ensemble as a tool

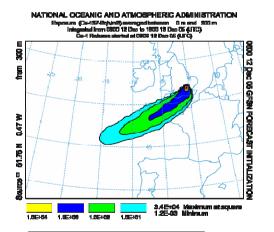
- In operational conditions problems with NWP and CTM model(s) may cost too much
- Model specifics mix-up with limited atmospheric predictability
- No data/time for verification
- Possible solution: convert bugs to features
- A set of "generally good" NWPs and CTMs is considered an ensemble
 - > Forecast is then computed as a "common ground", if any
- Statistically, all existing ensembles are not significant but they work
 - > providing "moral support" for the forecaster if all models converge
 - highlighting outliers, if any
 - ringing alarm bell if forecasts diverge

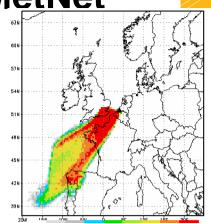
Ensemble as a tool (2): ETEX case


• ETEX simulations: ensemble (thick blue line) is nearly always superior to ALL individual models it consists of (Galmarini et al, 2004, Sofiev et al, 2006)

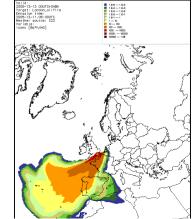
Ensemble as a tool (3): Buncefield fire




- Major explosion at Buncefield oil depot
- 2005-12-11 06:00 UTC
- several days of duration until the fuel expired
- Meteorological conditions: UK winter, stable BL, significant wind shear with height
- Source: huge buoyancy, blows rise up to 3km through inversions (also a fraction confined within 300m of BL)



CTM-NWP, ensemble as a tool: NKS MetNet


- MetNet: Nordic Network of Met Services engaged in emergency preparedness
 - mutual backup, both in meteorology and transport models
 - several exercises per year – dry runs and actual cases
- Buncefield fire has been simulated same day, with source height up to 300m

MetNet final report, Christer et al, 2007

Content

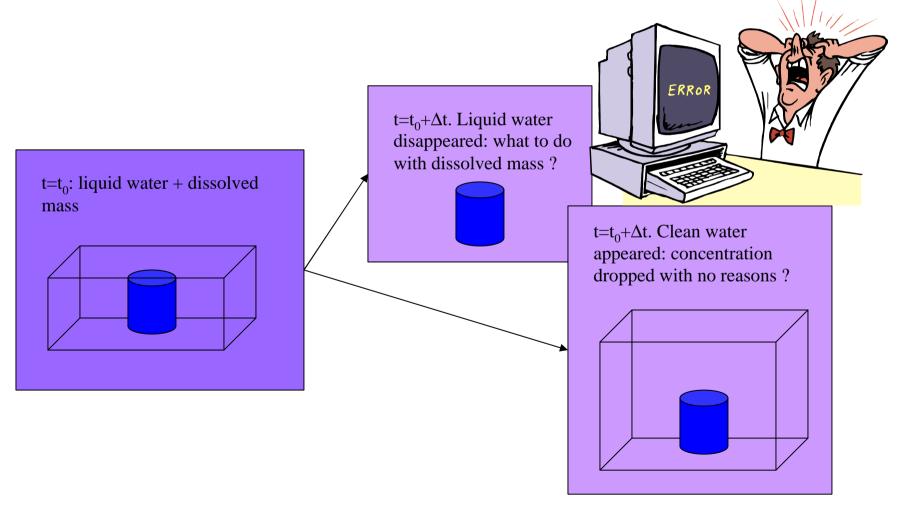
- What is the air quality (AQ) modelling?
- CTM as specific user of meteorological (or numerical weather prediction, NWP) models
- Coupling NWP and CTM models: towards Chemical Weather models
 - > NWP + CTM: a single modelling couple
 - means of coupling
 - > example of NWP->CTM interface tasks
 - consistency issues
 - re-stating ABL
- Examples
- Summary

NWP + CTM: a single modelling couple

- Historically, each CTM is made downstream of some specific NWP
 - possibility to use in-full its strengths and adjust to "tricks"
 - lack of both technical compatibility across different systems
- Recently, improvements in both sides allowed further flexibility, so many CTMs are now linked to more than one NWP – and vise versa
 - still, sensitive parameters must be cross-verified and, possibly, internal adjustments to "tricks" introduced
 - technical, e.g. ECMWF reports precipitation in [m] instead of [kg/m2]=[mm]
 - methodological, e.g. scale dependence
- Features of NWP+CTM couple vary strongly if any of components is changed
 - > The couple constitutes a Chemical Weather (CW) model

Coupling NWP and CTM

- Two main streams: online and offline coupling
- Online: a single model
 - Atmospheric chemistry is a subroutine of the CW model similar to atmospheric dynamics or physics
 - Outstanding internal harmony
 - Easy information exchange between all modules
 - Heavy system, difficult to develop and modify
 - Convenient in some, unnecessary in other applications
 - ≻ ...


Coupling NWP and CTM (2)

- Offline: two models + interface
 - > Models are separate, interface ensures information transfer
 - No redundancy in computations
 - Easy development of all parts
 - Multiple NWP+CTM combinations are possible
 - Consistency issues
 - Feedback CTM -> NWP is somewhat trickier
 - ▶ ...
- Conclusion: all animals have equal rights, each suits to own niche

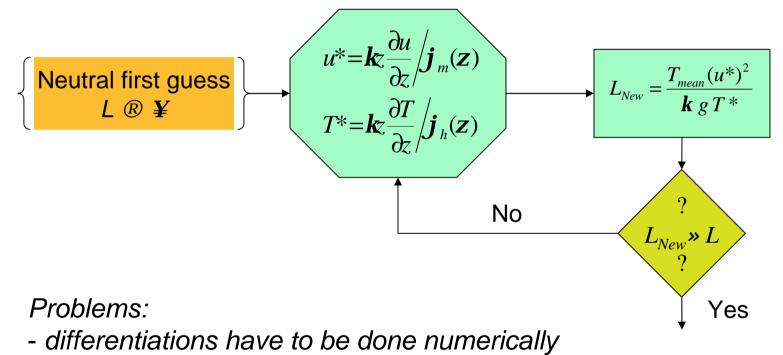
NWP -> CTM interface: consistency

- Liquid water versus water-solved species
- Surface pressure of air versus partial surface pressure of a substance

NWP -> CTM interface: consistency (2)

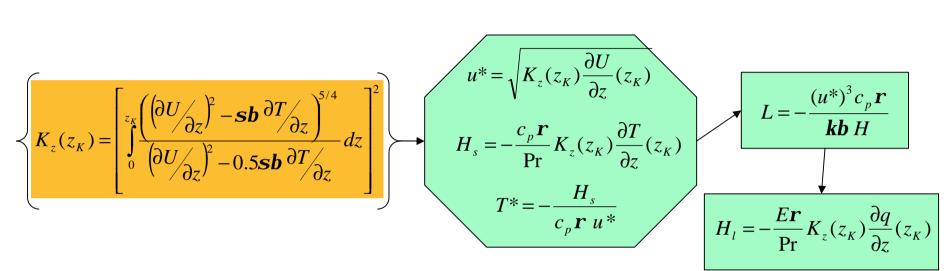
- NWP models tend to limit their accuracy just fitting their own needs
- E.g. numerical differentiation is difficult to implement

$$\frac{\partial T}{\partial z} \approx \frac{\Delta T}{\Delta z} \sim \frac{4^0}{1km} \sim \frac{0.04 \text{deg}}{10m}$$


- GRIB (WMO standard for NWP information storage) accuracy ~ 0.01⁰ ⇒ for Dz~10m signal = noise
- The better resolution the worse the signal–to–noise ratio
- The stronger mixing the worse the s-to-n ratio

NWP->CTM: ABL re-stating

- Problem: the above-mentioned need to re-state (or create) the parameters driving mixing in the ABL and above
- Input: standard well-verified profiles of wind, temperature and humidity
 - e.g. heat fluxes, even if available, are dangerous due to no verification
- Output: standard set of scaling variables
- Extra requirements
 - limit numerical differentiation
 - stability of the scheme
 - > efficiency


Problem discussion: iterative solution

- convergence of the iterations is not proven

SILAM ABL diagnostic

Here all derivatives are NOT computed numerically but rather taken from the analytical approximations of profiles.

Since $z_k \sim 1m$, these profiles can be taken purely logarithmic. Non-logarithmic corrections start to play a strong role at $|z/L| \sim 0.5$

Assuming the logarithmic shape, it is enough to have 2 values – at the screening and the 1st model levels – to determine the profile.

All fluctuating and not well-defined parameters are inside the integral, thus their effect is smoothed out

Problem solution(1)

Closure equation obtained from M-O similarity consideration (Berlyand & Genikhovich, 1971):

$$\sqrt{TKE} \frac{d}{dz} \left(\frac{K_z}{TKE} \right) = \mathbf{k} c_e^{0.25} \Phi(\mathbf{z})$$

- For practical applications, $\Phi = 1$; it corresponds to a differential expression combining the eddy diffusivity and TKE
- Using this closure expression together with equations governing the surface layer, one can obtain the following formula:

$$K_{z} = \left\{ \frac{\mathbf{k}}{2} \int_{0}^{z} \frac{\left[\left(\frac{dU}{dz} \right)^{2} - \mathbf{sb} \, d\mathbf{q} \right]^{5/4}}{\left(\frac{dU}{dz} \right)^{2} - 0.5\mathbf{sb} \, d\mathbf{q} \right]^{2}} dz \right\}^{2}$$

Problem solution (3)

Logarithmic profile assumption near the surface (z <</L/)

$$T(z) = T_g + T^* \operatorname{Pr} \ln \frac{z}{z_{0T}} \implies \frac{\partial T}{\partial z}(z) = T^* \operatorname{Pr} \frac{1}{z}$$

Having temperature values at two levels, obtain:

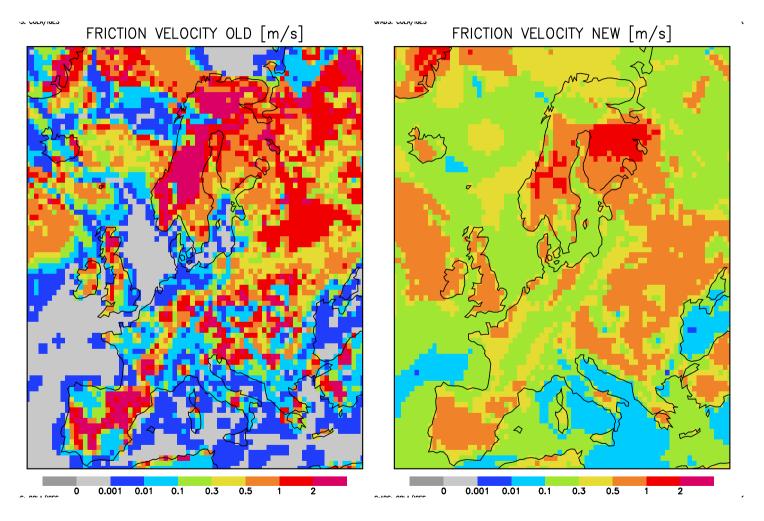
$$T(z_2) - T(z_1) = T^* \operatorname{Pr} \ln \frac{z_2}{z_1} \implies T^* \operatorname{Pr} = \frac{T(z_2) - T(z_1)}{\ln \frac{z_2}{z_1}} \implies \frac{\partial T}{\partial z} = \frac{T(z_2) - T(z_1)}{z \ln \frac{z_2}{z_1}}$$

Analogously, for velocity scale:

 $\frac{\partial U}{\partial z} = \frac{U(z_2) - U(z_1)}{z \ln \frac{z_2}{z_1}}$

These dependencies are substituted into K_z formula, where the integral is tabulated

SILAM ABL: non-classical additions


- Pr = Pr(Ri) for stable and Pr(z/L) for unstable conditions
 - > dependence is just a fit of experimental data

$$\Pr = \Pr_{neutral} (1 + Ri^{1.078})$$

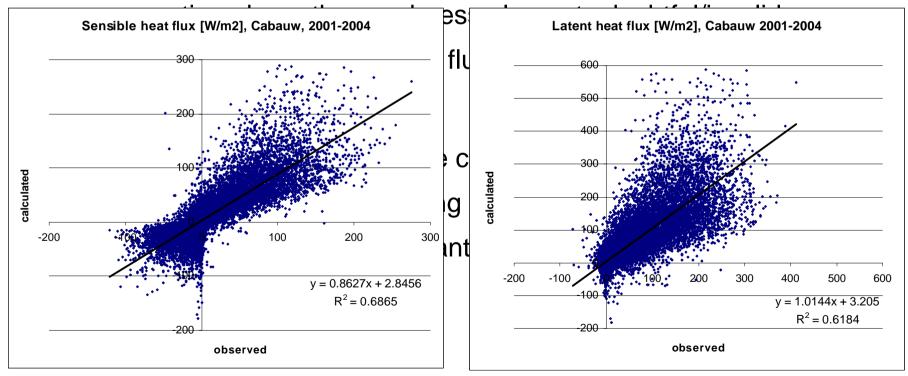
- note: after new theory of S.Zilitinkevich et al, must be 1+Ri for large Ri

• in principle, the second iteration is allowed with nonlogarithmic profiles (not used)

Comparison of solutions

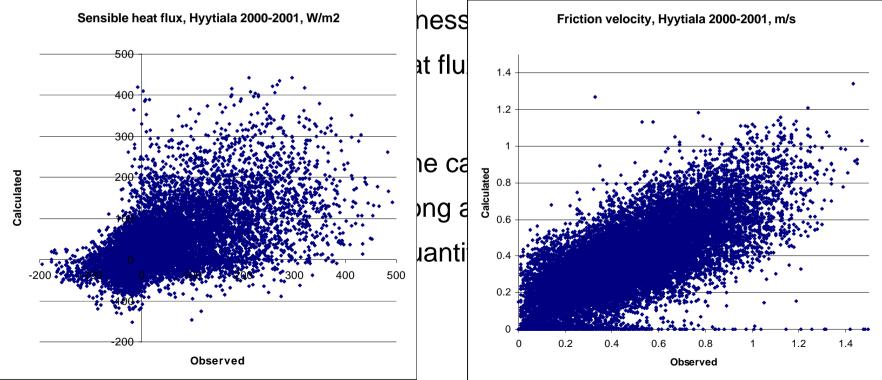
Friction velocity, iterative solution

Friction velocity, K_z-based solution

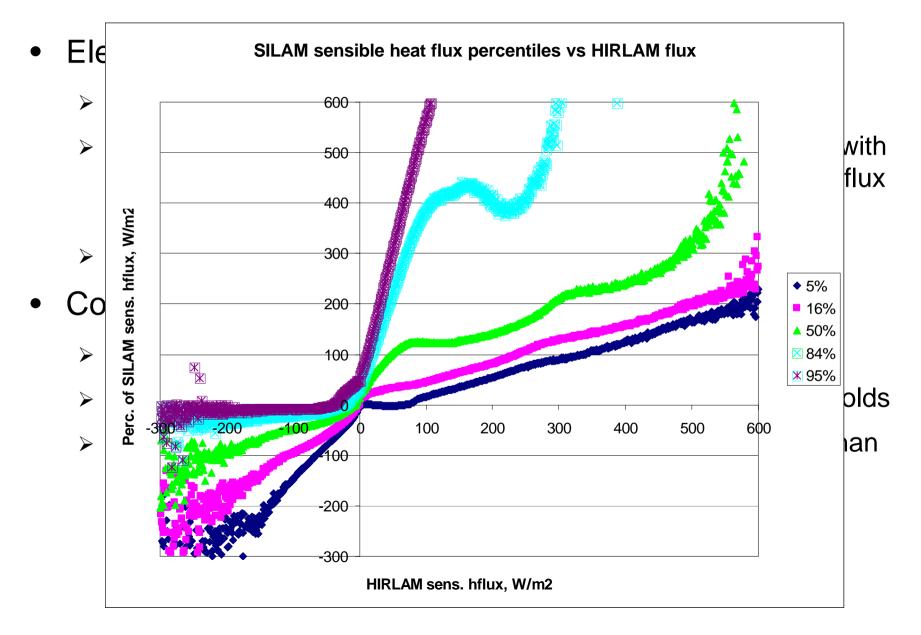

Evaluation of SILAM ABL diagnostic

• Elements

- Cabauw mast: classical case
- Hyytiela mast: displacement height is to be introduced to deal with forest canopy, low inversions during winter make the constant-flux assumption above the roughness elements doubtful/invalid
- > HIRLAM sensible / latent heat fluxes
- Conclusions
 - Cabauw mast: as good as one can expect or hope
 - Hyytiela: robust enough as long as constant-flux assumption holds
 - HIRLAM: qualitatively OK, quantitatively agreement is worse than that with the masts


Evaluation of SILAM ABL diagnostic

- Elements
 - Cabauw mast: classical case
 - Hyytiela mast: displacement height is to be introduced to deal with forest canopy, low inversions during winter make the constant-flux



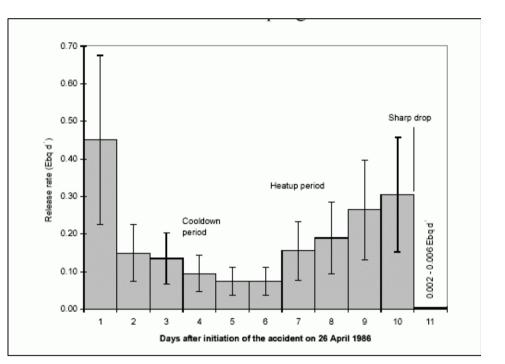
Evaluation of SILAM ABL diagnostic

- Elements
 - Cabauw mast: classical case
 - Hyytiela mast: displacement height is to be introduced to deal with forest canopy, low inversions during winter make the constant-flux

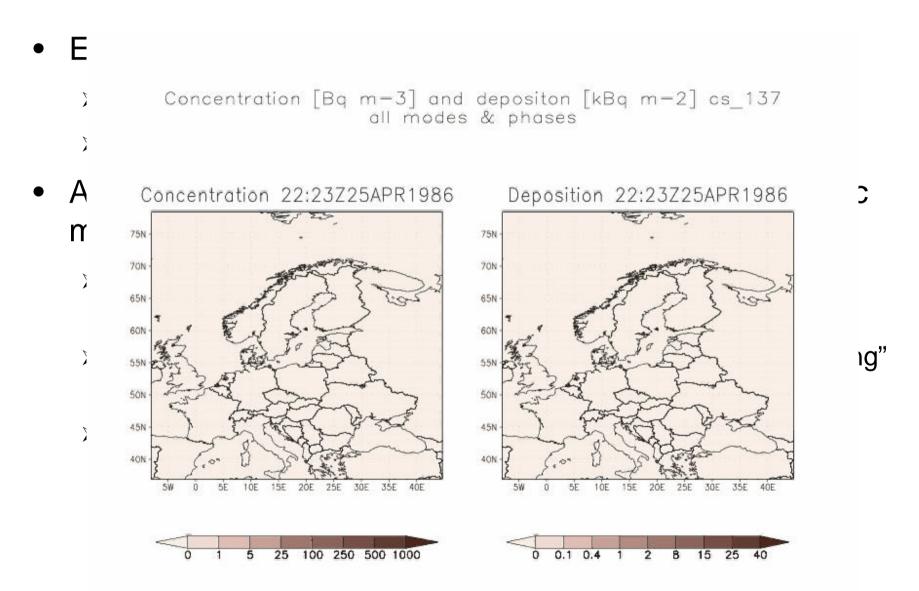
Evaluation of SILAM ABL diagnostic

Content

- What is the air quality (AQ) modelling?
- CTM as specific user of meteorological (or numerical weather prediction, NWP) models
- Coupling NWP and CTM models: towards Chemical Weather models
- Examples
 - > synoptic-scale dissipation of information
 - > air quality forecasting
- Summary


Synoptic-scale information dissipation

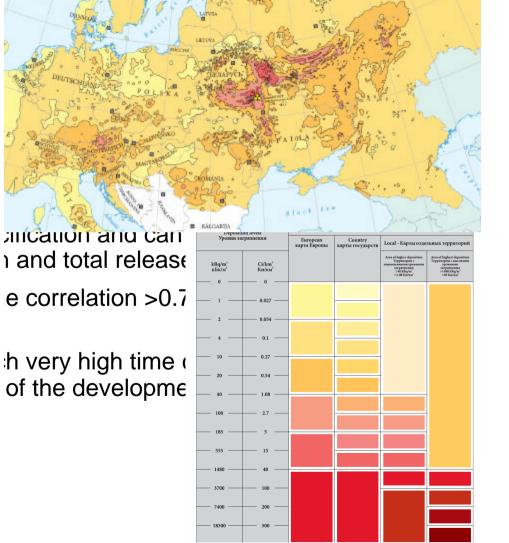
- Dissipation of the information happens not only due to sub-grid turbulence, with growing time scale the synoptic motions start to act just the same
- Example: Chernobyl accident
 - Information on the catastrophe and release characteristics were hidden for a few days, thus posing a need for source apportionment
- Modelling assessment with SILAM+HIRLAM/ECMWF
 - > straightforward simulations do not pose major problems
 - inverse problem (source apportionment) proved to be impossible with that-time monitoring network (and, to a large extent, with today's one too)

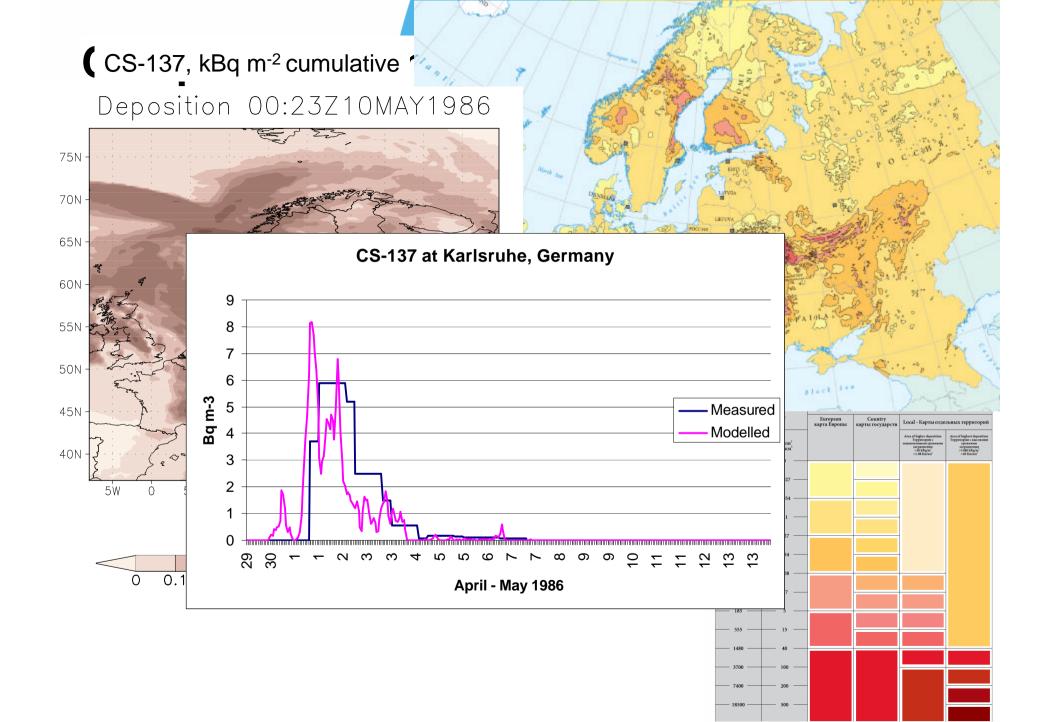


SILAM setup for the simulations

- General setup
 - Meteorological fields: HIRLAM-6 (operational in 2006, re-run for 1986); ECMWF (operational in 1986); HIRLAM-2 (operational in 1986)
 - Resolution of the dispersion output: 1 hr, 30 km
- Forward runs
 - Emission: 23 nuclides covering >99% of the estimated release, daily values for release intensity and vertical distribution
 - Computed period: 25.04 20.05.1986
- Inverse runs
 - Observations: up to 94 stations (depending on nuclide) in Western Europe; up to hourly resolution (mainly daily or lower)
 - Modified 4D-VAR data assimilation approach
 - Analysed period: 20.04 15.05.1986

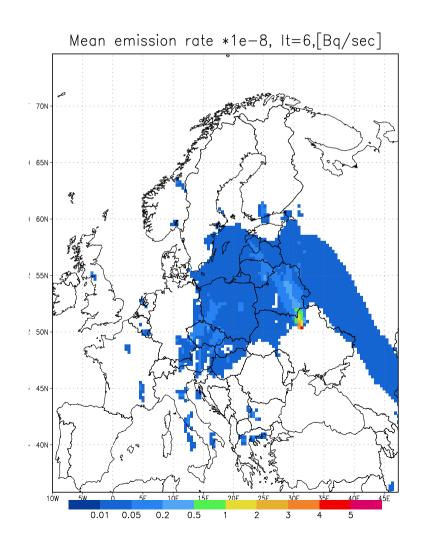



Results of the forward simulations



Comparison with observed contamination CS-137, kBq m⁻² cumulative

Deposition 00:23Z10MAY1986

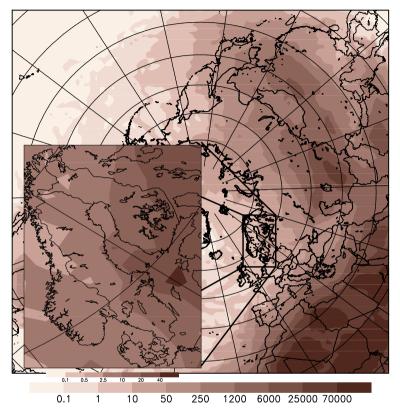


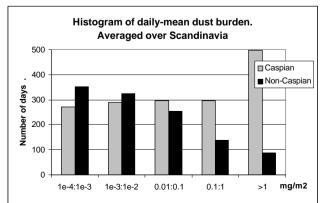
Comparison with observed contamination

- Comparison specifics
 - time-resolved concentration measurements are compared with dynamic fields using MMAS software
 - low time resolution of most of data
 - > cumulated deposition measurements are compared with the final totals
 - > large fraction of observations is still not available in numerical format
- General results
 - deposition pattern is reproduced surprisingly well, while absolute levels strongly depend on emission specification and can be right of wrong depending on nuclide composition and total release estimates
 - concentration evolution: mean time correlation >0.7, absolute levels depend on emission specification
 - Iow time resolution "helps" to reach very high time correlation (>0.9 for 30% of stations) but hides details of the development

4D-VAR iterations: time-integrated emission fields

Results of the 4D-VAR for Chernobyl

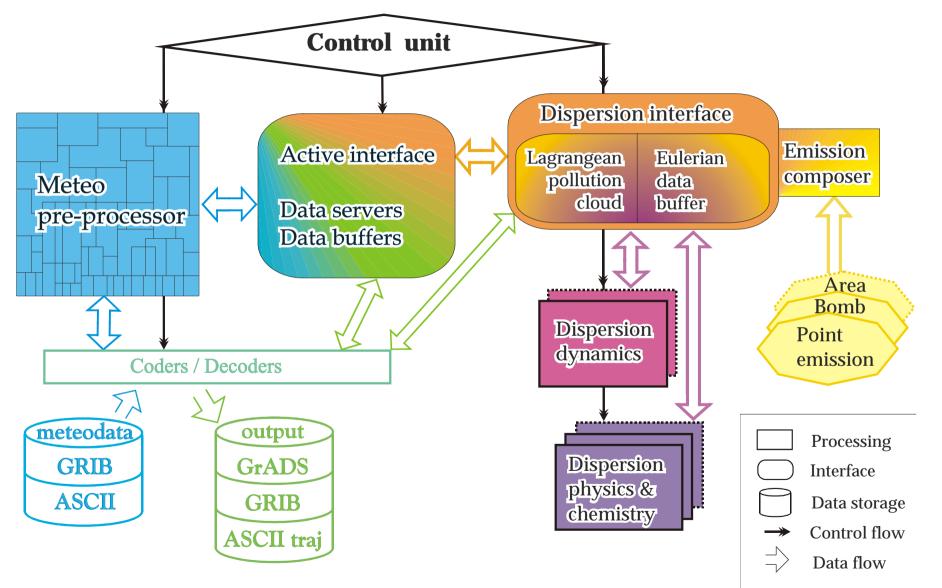

- Formally, the inverse problem is solved
 - > the site location is disclosed and time variation is reasonable
 - Further time adjustment is possible with a site location constraint
- However, the run showed severe lack of input information
 - > Most of observational sites are located at large distances from the source,
 - > Actual site place was disclosed by just one neighbouring site
- Very complicated meteorological pattern: synoptic-scale mixing
 - Pollution was cycling over central and eastern Europe for a few days
 - The origin of these clouds cannot be resolved without observational information from these regions
 - The model did not learn new info from 4D-VAR iterations (contrary to ETEX source apportionment)
 - Reason: limited "memory" over time: the nearly-well-mixed plume cannot be inverted



Example 2: desert dust re-analysis

- Deserts are not too common in Europe, especially in Northern Europe
- However, the impact of dust storms can be substantial – episodically
- To get some long-term statistics, a hemispheric model DMAT has been run over 22 years with NCEP re-analysis as NWP forcing
- Map: dust load, mg PM m⁻², mean 1967-1988
- Chart: Nbr of episodes with specific dust load

(Hongisto & Sofiev, 2004)



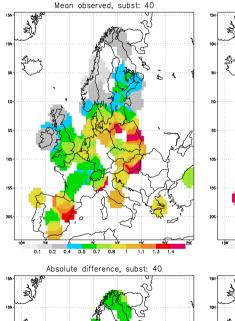
Example 3: air quality forecasting

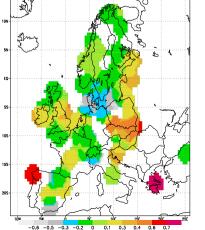
- Main practical interest in Finland: atmospheric aerosols
 - > ozone problem is not that pressing (yet)
- A large variety of sources
 - > anthropogenic emissions
 - direct anthropogenic emission of particles
 - anthropogenic emission of aerosol pre-cursors
 - > natural or seemingly natural
 - biogenic emission of aerosol precursors
 - sea salt
 - wind-blown dust
 - wild-land fires (whatever the origin is)
- Target is hourly resolution
 - strong influence of hour-by-hour emission time variations, which are entirely unknown (only climatologic variation coefficients are available)
 - meteorology-driven emission

SILAM modelling system

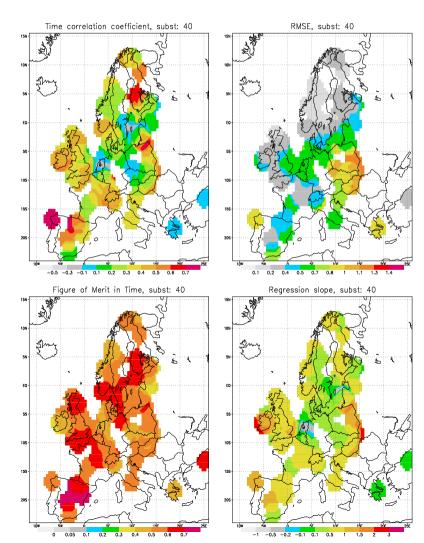
Evaluation of the re-analysis results

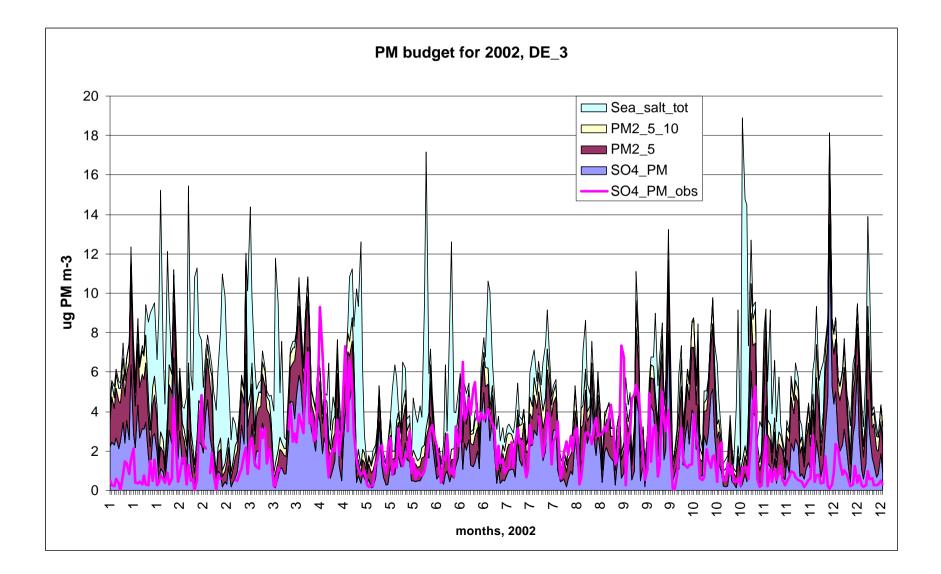
• Comparison with EMEP data

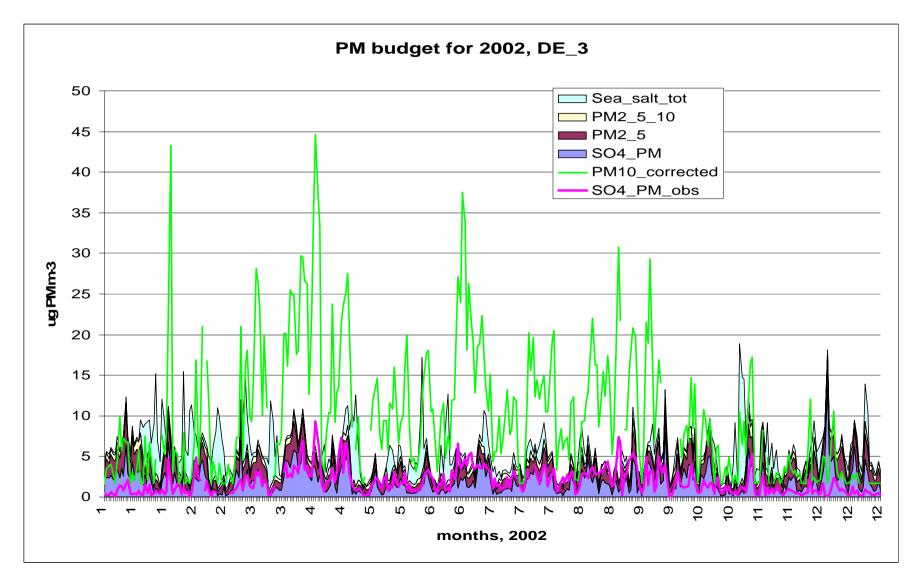

- SO_x as the main dataset: SO₂ in air, SO₄ in aerosol, SO₄ wet deposition
- > aerosol observations are scarce and do not include speciation; however, work is on-going to compare the bulk concentrations (PPM 2.5 / PPM 10 + SO₄ + SeaSalt ⇒ ~80% of PM)
- Mean values are good and quality is homogeneous in space
- Temporal correlation is somewhat low for monthly level (seasonality of emission is 15 years old)
- Specific parameters FMT, RMSE, RelDiff are within fair-togood limits
- Comparison with some campaign results: on-going (Biofor-1999, Varrio-2003, etc...)

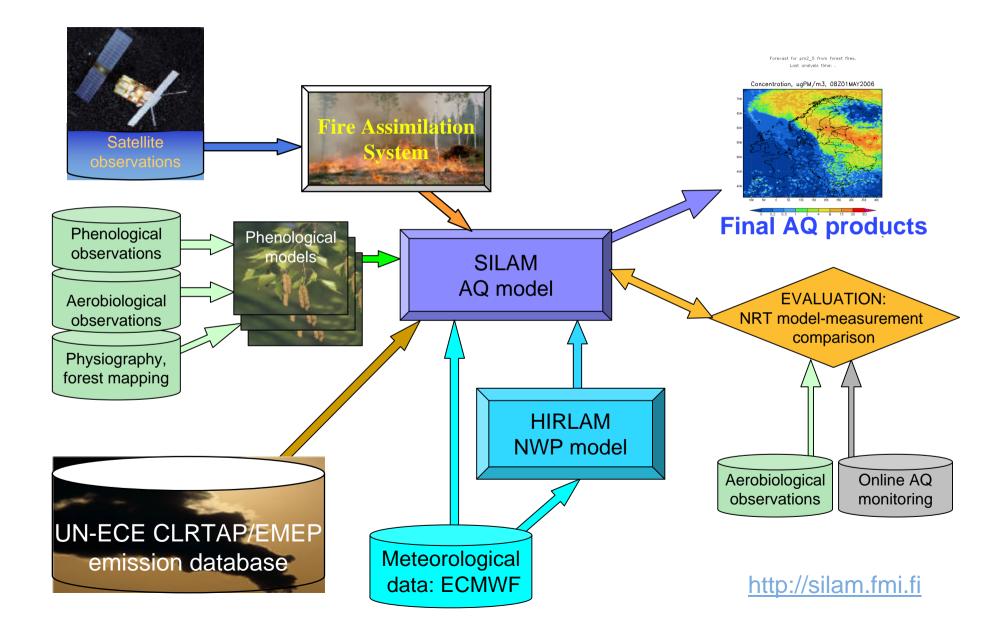

Examples of the comparison

Mean modelled, subst: 40

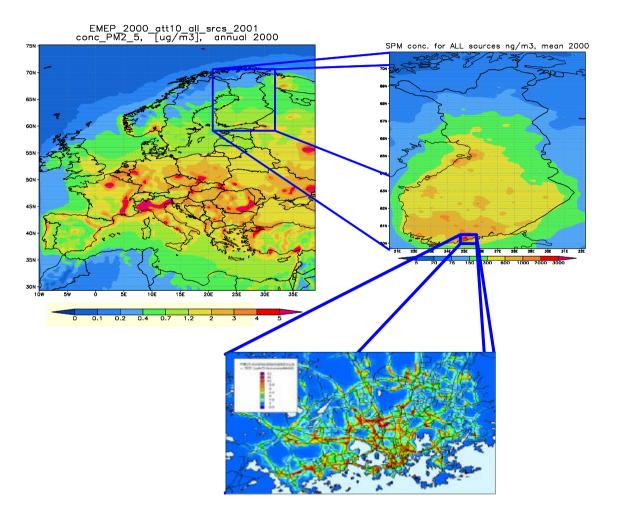





Example of central-Germany EMEP station GE-3



Example of central-Germany EMEP station GE-3



Regional CTM system at FMI for AQ forecasting

Forecast: target configuration

- Maps: PM 2.5 mean-2001 concentrations, ug PM /m3
 - > European
 - Finnish source contribution (obs different scale)
 - Helsinki cityscale

Summary

- Chemical transport models, born as downstream applications of meteorological models, are growing (has grown??) up to become the other side of the coin called "Chemical Weather Modelling System"
 - CTM is the most demanding user and unique supplier of data for NWP
 - > needs and possibilities of joint complex verification
- Means of creating CW system from NWP and CTM couple are twofold: online and offline coupling
 - each has own strong points and weaknesses, as well as application areas
- Systematic research of CW systems and their features is just getting the steam

Instead of conclusion

• **Mechanitis**: occupational decease of one who believes that a mathematical problem, which he can neither solve nor even formulate, can readily be answered, once he has access to a sufficiently expensive machine.

Bernard Koopman (1956) Operations research, 4, 422-430