Atmospheric Planetary Boundary Layers (ABLs / PBLs) in stable, neural and unstable stratification: scaling, data, analytical models and surface-flux algorithms

Sergej S. Zilitinkevich^{1,2,3}

¹ Division of Atmospheric Sciences, University of Helsinki, Finland

² Meteorological Research, Finnish Meteorological Institute, Helsinki

³ Nansen Environmental and Remote Sensing Centre, Bergen, Norway

Helsinki 27 May – 1 June 2007

Part 1 Revised theory and improved parameterization of the Stably **Stratified Atmospheric Boundary** Layer (SBL) in climate, NWP, AQ, and wind energy models

References

- Zilitinkevich, S., and Calanca, P., 2000: An extended similarity-theory for the stably stratified atmospheric surface layer. *Quart. J. Roy. Meteorol. Soc.*, **126**, 1913-1923.
- Zilitinkevich, S., 2002: Third-order transport due to internal waves and non-local turbulence in the stably stratified surface layer. *Quart, J. Roy. Met. Soc.* **128**, 913-925.
- Zilitinkevich, S.S., Perov, V.L., and King, J.C., 2002: Near-surface turbulent fluxes in stable stratification: calculation techniques for use in general circulation models. *Quart, J. Roy. Met. Soc.* **128**, 1571-1587.
- Zilitinkevich S. S., and Esau I. N., 2005: Resistance and heat/mass transfer laws for neutral and stable planetary boundary layers: old theory advanced and re-evaluated. *Quart. J. Roy. Met. Soc.* **131**, 1863-1892.
- Zilitinkevich, S., Esau, I. and Baklanov, A., 2007: Further comments on the equilibrium height of neutral and stable planetary boundary layers. *Quart. J. Roy. Met. Soc.* **133**, 265-271.
- Zilitinkevich, S. S., and Esau, I. N., 2007: Similarity theory and calculation of turbulent fluxes at the surface for stably stratified atmospheric boundary layers. *Boundary-Layer Meteorol.* DOI: 10.1007/s10546-007-9187-4.

Motivation

NWP, climate and air pollution modeling require

- Surface fluxes (lower boundary conditions in all models) surface layer roughness layer
- SBL height in advanced surface-flux scheme (especially for shallow SBLs) in air-pollution modeling
- Turbulent fluxes in any stratification (to close Reynolds equations in all models)

critical Richardson number? turbulent Prandtl number where to go?

 Depth/strength of and fluxes within capping inversions (especially in Polar regions)

State of the art

Surface fluxes

Surface layer concept: au , F_{θ} , F_{q} = constant

Local M-O (1954) scaling: $L = -u_*^3 / F_{bs}$

Roughness length $z_{0u} \sim h_0$: no stability effect

SBL height

Local (RM, 1935) \Leftrightarrow Z(1974): $N_{\text{free-flow}}$ neglected

Closure

Down-gradient, Kolmogorov (1941): $K_M, K_H, K_D \sim E_K^{1/2} l_T$

TKE and ,e.g., \mathcal{E} -budgets: TPE disregarded

Improvements: to avoid Ri_{cr} and correct Pr_{turb}

Capping inversions

low interest / no parameterization

Data Mid latitudes \rightarrow residual layers $(N=0) \rightarrow$ SBL = nocturnal BL

Basic types of the SBL

• Until recently ABLs were distinguished accounting only for $F_{bs} = F_*$: neutral at $F_* = 0$ stable at $F_* < 0$

- Now more detailed classification:
 truly neutral (TN) ABL: F_{*}=0, N=0
 conventionally neutral (CN) ABL:F_{*}=0, N>0
 nocturnal stable (NS) ABL: F_{*}<0, N=0
 long-lived stable (LS) ABL: F_{*}<0, N>0
- Realistic surface flux calculation scheme should be based on a model applicable to all these types of the ABL

1.1 Mean profiles and surface fluxes (Z and Esau, 2007)

Content

- Revision of the similarity theory for the stably stratified ABL
- Analytical approximations for the wind velocity and potential temperature profiles across the ABL
- Validation of new theory against LES and observational data
- Improved surface flux scheme for use in operational models

Turbulence in atmospheric models

- turbulence closure to calculate vertical fluxes: $\vec{\tau}$ and F_{θ} through mean gradients: $d\vec{U}/dz$ and $d\Theta/dz$
- flux-profile relationships to calculate the surface fluxes: $u_*^2 = \tau_* = \tau \mid_{z=0}$, $F_* = F_\theta \mid_{z=0}$ through wind speed $U_1 = U \mid_{z=z_1}$ and potential temperature $\Theta_1 = \Theta \mid_{z=z_1}$ at a given level z_1
- In NWP and climate models, the lowest computational level is $z_1 \sim 30$ m

Neutral stratification (no problem)

From logarithmic wall law:

$$\frac{dU}{dz} = \frac{\tau^{1/2}}{kz}, \quad \frac{d\Theta}{dz} = \frac{-F_{\theta}}{k_T \tau^{1/2} z}, \quad U = \frac{\tau^{1/2}}{k} \ln \frac{z}{z_{0u}}, \quad \Theta - \Theta_0 = \frac{-F_{\theta}}{k_T \tau^{1/2}} \ln \frac{z}{z_{0u}}$$

k, k_T von Karman constants; z_{0u} aerodynamic roughness length for momentum; Θ_0 aerodynamic surface potential temperature (at z_{0u}) $[\Theta_0 - \Theta_s$ through z_{0T}]

It follows: $\tau_1^{1/2} = kU_1 (\ln z / z_{0u})^{-1}$, $F_{\theta 1} = -kk_T U_1 (\Theta_1 - \Theta_0) (\ln z / z_{0u})^{-2}$ $\tau_1 = \tau_*$, $F_{\theta 1} = F_*$ when $z_1 \approx 30$ m << h \rightarrow OK in neutral stratification

Stable stratification: current theory

(i) local scaling, (ii) log-linear Θ-profile → both questionable

- When z_1 is much above the surface layer $\rightarrow \tau_1 \neq \tau_*$, $F_{\theta 1} \neq F_*$
- Monin-Obukhov (MO) theory $\rightarrow L = \frac{\tau^{3/2}}{-\beta F_{\theta}}$ (neglects other scales) \rightarrow

$$\frac{kz}{\tau^{1/2}}\frac{dU}{dz} = \Phi_M(\xi), \quad \frac{k_T \tau^{1/2} z}{F_\theta} \frac{d\Theta}{dz} = \Phi_H(\xi), \quad \text{where} \quad \xi = \frac{z}{L}$$

• $\Phi_M = 1 + C_{U1}\xi$, $\Phi_H = 1 + C_{\Theta1}\xi$ from z-less stratification concept

$$U = \frac{u_*}{k} \left(\ln \frac{z}{z_{u0}} + C_{U1} \frac{z}{L_s} \right), \quad \Theta - \Theta_0 = \frac{-F_*}{k_T u_*} \left(\ln \frac{z}{z_{u0}} + C_{\Theta 1} \frac{z}{L_s} \right)$$

- Ri= $\beta (d\Theta/dz)(dU/dz)^{-2}$ \rightarrow Ri_c= $k^2C_{\Theta 1}k_T^{-1}C_{U1}^{-2}$ (unacceptable)
- $C_{U1} \sim 2$, $C_{\Theta 1}$ also ~ 2 (factually increases with $z \setminus L$)

Stable stratification: current parameterization

To avoid critical Ri modellers use **empirical**, **heuristic** correction functions to the neutral drag and heat/mass transfer coefficients

- Drag and heat transfer coefficients: $C_D = \tau / (U_1)^2$, $C_H = -F_{\theta s} / (U_1 \Delta \Theta)$
- Neutral: C_{Dn} , C_{Hn} – from the logarithmic wall law
- To account for stratification, correction functions (dependent only of Ri):

$$f_D(Ri_1) = C_D / C_{Dn}$$
 and $f_H(Ri_1) = C_H / C_{Hn}$

 $Ri_1 = \beta(\Delta\Theta)z_1/(U_1)^2$ (surface-layer "Richardson number") is given parameter

Stable stratification: revised theory

Zilitinkevich and Esau (2005) \rightarrow two additional length scales besides L:

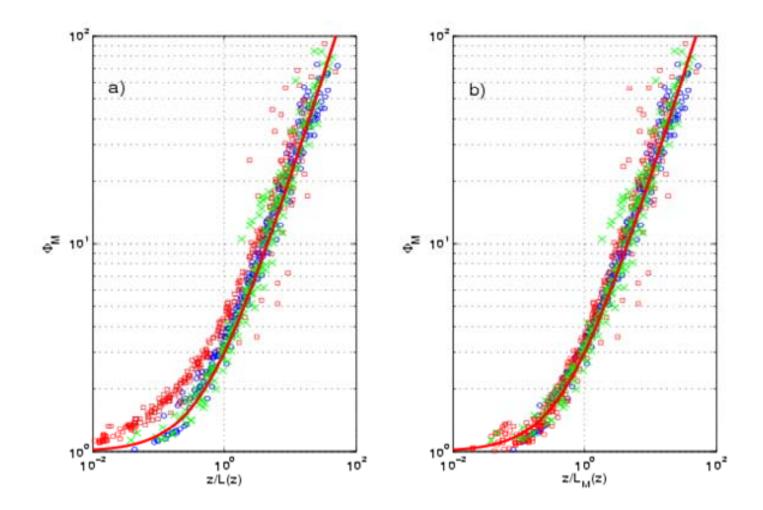
$$L_N = \frac{\tau^{1/2}}{N}$$
 non-local effect of the free flow static stability

$$L_f = \frac{\tau^{1/2}}{|f|}$$
 the effect of the Earth's rotation

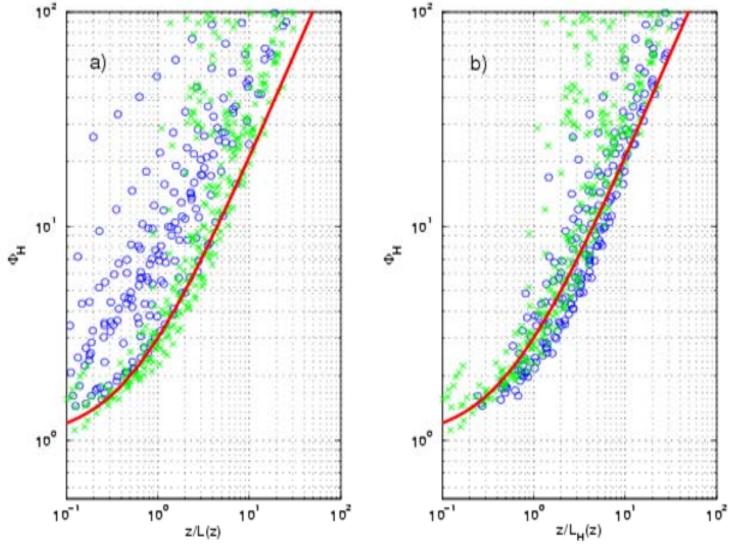
N is the Brunt-Väisälä frequency at z > h ($N \sim 10^{-2} \, \text{s}^{-1}$), f is the Coriolis parameter

Interpolation:
$$\frac{1}{L_*} = \left[\left(\frac{1}{L} \right)^2 + \left(\frac{C_N}{L_N} \right)^2 + \left(\frac{C_f}{L_f} \right)^2 \right]^{1/2} \text{ where } C_N = 0.1 \text{ and } C_f = 1$$

$kz\tau^{-1/2}dU/dz$ vs. z/L (a), z/L_* (b) x <u>nocturnal</u>; o <u>long-lived</u>; \Box <u>conventionally neutral</u>

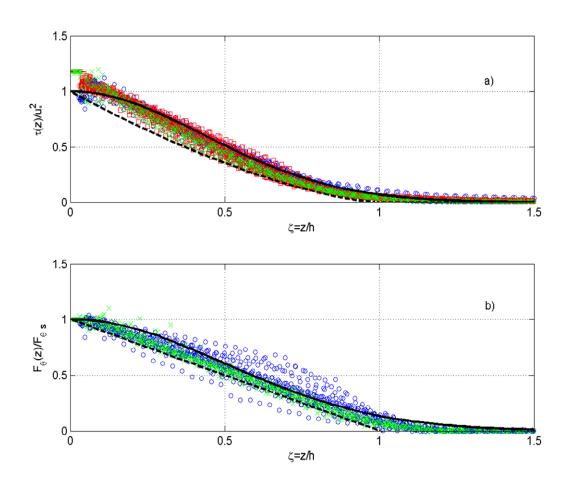


$\Phi_H = (k_T \tau^{1/2} z / F_\theta) d\Theta / dz$ vs. z/L (a), z/L_* (b) x <u>nocturnal</u>; o <u>long-lived</u>



Vertical profiles of turbulent fluxes

LES turbulent fluxes: solid lines $\tau/u_*^2 = \exp(-\frac{8}{3}\varsigma^2)$, $F_\theta/F_\theta = \exp(-2\varsigma^2)$ Approximation based on atmospheric data (e.g. Lenshow, 1988): dashed lines



New mean-gradient formulation (no critical Ri)

$$\operatorname{Ri}_f = \frac{-\beta F_{\theta}}{\tau dU/dz} > \operatorname{Ri}_f^{\infty} \approx 0.2$$

Final region number is limited: $\mathrm{Ri}_f = \frac{-\beta F_\theta}{\tau dU/dz} > \mathrm{Ri}_\mathrm{f}^\infty \approx 0.2$ Hence asymptotically $\frac{dU}{dz} \to \frac{\tau^{1/2}}{\mathrm{Ri}_f^\infty L}$, and interpolating $\Phi_M = 1 + C_{U1} \xi$

$$\Phi_{\scriptscriptstyle M} = 1 + C_{U1} \xi$$

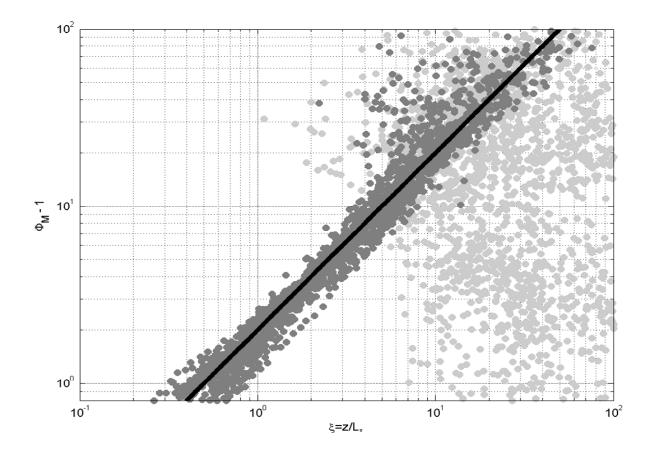
Gradient Richardson number becomes

$$Ri \equiv \frac{\beta d\Theta / dz}{(dU / dz)^2} = \frac{k^2}{k_T} \frac{\xi \Phi_H(\xi)}{(1 + C_{U1}\xi)^2}$$

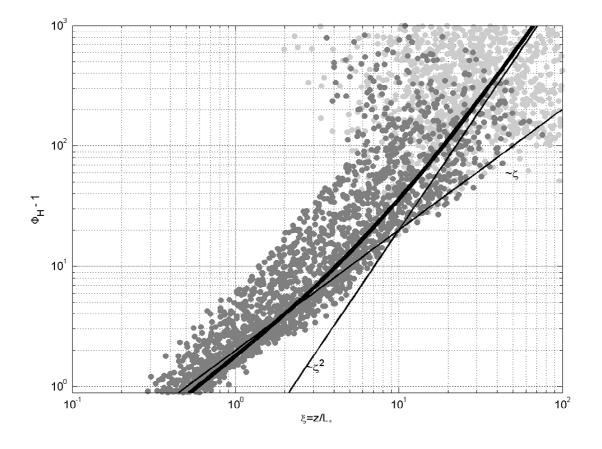
To assure no Ri-critical, ξ -dependence of Φ_H should be stronger then linear.

Including CN and LS ABLs:
$$\Phi_M = 1 + C_{U1} \frac{z}{L}$$
, $\Phi_H = 1 + C_{\Theta1} \frac{z}{L} \xi + C_{\Theta2} \left(\frac{z}{L}\right)^2$

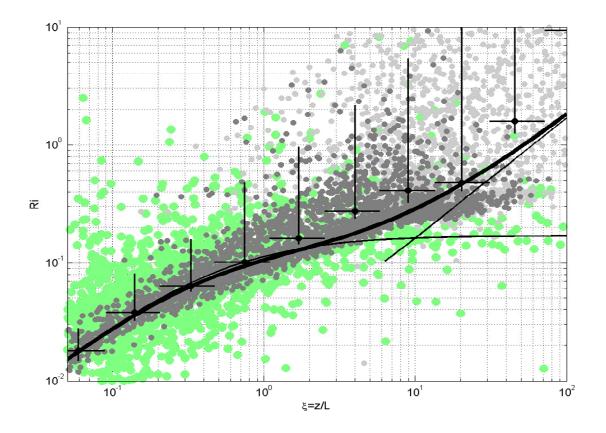
$$\Phi_H = 1 + C_{\Theta 1} \frac{z}{L_*} \xi + C_{\Theta 2} \left(\frac{z}{L_*}\right)^2$$



 Φ_M vs. $\xi = z/L_*$, after LES DATABASE64 (all types of SBL). Dark grey points for z < h; light grey points for z > h; the line corresponds to $C_{U1} = 2$.



 Φ_H vs. $\xi=z/L_*$ (all SBLs). Bold curve is our approximation: $C_{\Theta 1}=1.8$, $C_{\Theta 2}=0.2$; thin lines are $\Phi_H=0.2\xi^2$ and traditional $\Phi_H=1+2\xi$.



Ri vs. $\xi = z/L$, after LES and field data (SHEBA - green points). Bold curve is our model with C_{U1} =2, $C_{\Theta 1}$ =1.6, $C_{\Theta 2}$ =0.2. Thin curve is Φ_H =1+2 ξ .

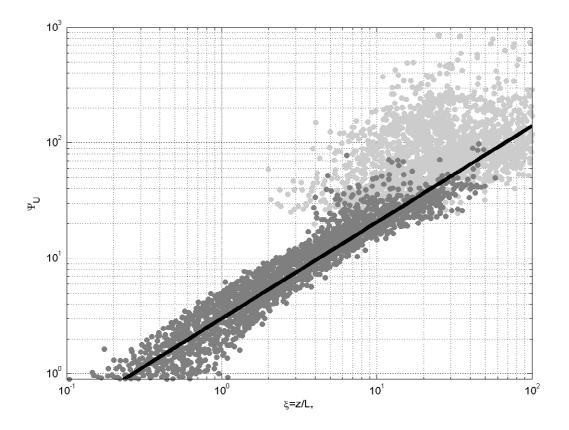
Mean profiles and flux-profile relationships

We consider wind/velocity and potential/temperature functions

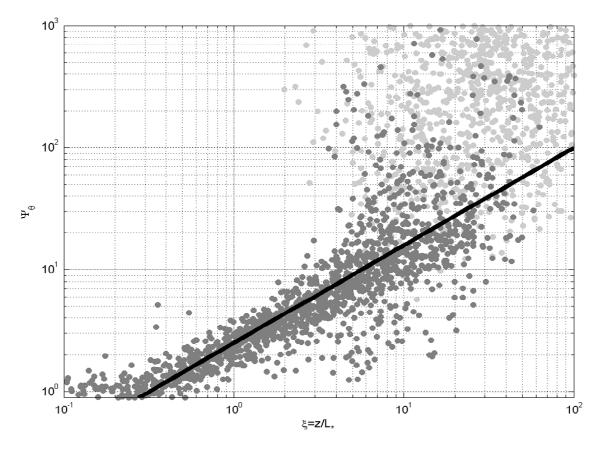
$$\Psi_U = \frac{kU(z)}{\tau^{1/2}} - \ln\frac{z}{z_{0u}} \quad \text{ and } \quad \Psi_\Theta = \frac{k_T \tau^{1/2} \big[\Theta(z) - \Theta_0\big]}{-F_\theta} - \ln\frac{z}{z_{0u}}$$

Our analyses show that Ψ_U and Ψ_Θ are universal functions of $\xi=z/L_*$

$$\Psi_U = C_U \xi^{5/6}$$
, $\Psi_\Theta = C_\Theta \xi^{4/5}$, with $C_U = 3.0$ and $C_\Theta = 2.5$



Wind-velocity function $\Psi_U = k\tau^{-1/2}U - \ln(z/z_{0u})$ vs. $\xi = z/L_*$, after LES DATABASE64 (all types of SBL). The line: $\Psi_U = C_U \xi^{5/6}$, $C_U = 3.0$.



Pot.-temperature function $\Psi_{\Theta} = k\tau^{-1/2} (\Theta - \Theta_0) (-F_{\theta})^{-1} - \ln(z/z_{0u})$ (all types of SBL). The line: $\Psi_{\Theta} = C_{\Theta} \xi^{4/5}$ with C_U =3.0 and C_{Θ} =2.5.

Analytical wind and temperature profiles (SBL)

$$\frac{kU}{\tau^{1/2}} = \ln \frac{z}{z_{0u}} + C_U \left(\frac{z}{L}\right)^{5/6} \left[1 + \frac{(C_N N)^2 + (C_f f)^2}{\tau} L^2\right]^{5/12}$$

$$\frac{k_T \tau^{1/2} (\Theta - \Theta_0)}{-F_{\theta}} = \ln \frac{z}{z_{0u}} + C_{\Theta} \left(\frac{z}{L}\right)^{4/5} \left[1 + \frac{(C_N N)^2 + (C_f f)^2}{\tau} L^2 \right]^{2/5}$$

where C_N =0.1 and C_f =1. Given U(z), $\Theta(z)$ and N, these equations allow determining τ , F_{θ} , and $L = \tau^{3/2} (-\beta F_{\theta})^{-1}$, at the computational level z.

Algorithm

Given τ , F_{θ} , surface fluxes are calculated using empirical dependencies

$$\frac{\tau}{\tau_*} = \exp\left[-\frac{8}{3}\left(\frac{z}{h}\right)^2\right], \quad \frac{F_{\theta}}{F_*} = \exp\left[-2\left(\frac{z}{h}\right)^2\right] \quad \text{(Figures above)}$$

The <u>equilibrium ABL height</u>, h_E , is determined diagnostically (Z. et al., 2006a):

$$\frac{1}{h_E^2} = \frac{f^2}{C_R^2 \tau_*} + \frac{N|f|}{C_{CN}^2 \tau_*} + \frac{|f\beta F_*|}{C_{NS}^2 \tau_*^2} \quad (C_R = 0.6, C_{CN} = 1.36, C_{NS} = 0.51)$$

The actual ABL height, after prognostic equation (Z. and Baklanov, 2002):

$$\frac{\partial h}{\partial t} + \vec{U} \cdot \nabla h - w_h = K_h \nabla^2 h - C_t \frac{u_*}{h_E} (h - h_E) \qquad (C_t = 1)$$

Given h, the free-flow Brunt-Väisälä frequency is

$$N^{4} = \frac{1}{h} \int_{h}^{2h} \left(\beta \frac{\partial \Theta}{\partial z} \right)^{2} dz$$

Conclusions 1.1: mean profiles & surface fluxes

Background: Generalised scaling accounting for the free-flow stability,

No critical Ri (TTE closure) Stable ABL height model

Verified against

LES DATABASE64 (4 ABL types: TN, CN, NS and LS) Data from the field campaign SHEBA

Deliverable 1: analytical wind & temperature profiles in SBLs

Deliverable 2: surface flux scheme for use in operational models

Requested: (i) roughness lengths and (ii) ABL height

1.2 STRATIFICATION EFFECT ON THE ROUGHNESS LENGTH

S. S. Zilitinkevich^{1,2,3}, I. Mammarella^{1,2}, A. Baklanov⁴, and S. M. Joffre²

- 1. Atmospheric Sciences, University of Helsinki, Finland
- 2. Finnish Meteorological Institute, Helsinki, Finland
- 3. Nansen Environmental and Remote Sensing Centre / Bjerknes Centre for Climate Research, Bergen, Norway
- 4. Danish Meteorological Institute, Copenhagen, Denmark

Reference (1.2)

S. S. Zilitinkevich, I. Mammarella, A. A. Baklanov, and S. M. Joffre, 2007: The roughness length in environmental fluid mechanics: the classical concept and the effect of stratification. Submitted to *Boundary-Layer Meteorology*.

Content (1.2)

Roughness length and displacement height:

$$u(z) = \frac{u_*}{k} \left[\ln \frac{z - d_{0u}}{z_{0u}} + \Psi_u \left(\frac{z}{L} \right) \right]$$

- No stability dependence of z_{0u} (and d_{0u}) in engineering fluid mechanics: neutral-stability z_0 = level, at which u(z) plotted vs. $\ln z$ approaches zero; $z_0 \sim \frac{1}{25}$ of typical height of roughness elements, h_0
- Meteorology / oceanography: h_0 comparable with MO length $L = \frac{u_*^2}{-\beta F_{\theta s}}$
- Stability dependence of the actual roughness length, z_{0u} : $z_{0u} < z_0$ in stable stratification; $z_{0u} > z_0$ in unstable stratification

Surface layer and roughness length

Self similarity in the surface layer (SL) $5h_0 < z < 10^{-1}h$

Height-constant fluxes: $\tau \approx \tau \mid_{z=5h_0} \equiv u_*^2$

 u_* and z serve as turbulent scales: $u_T \sim u_*$, $l_T \sim z$

Eddy viscosity $(k \approx 0.4)$ $K_M (\sim u_T l_T) = k u_* z$

Velocity gradient $\partial U / \partial z = \tau / K_M = u_* / kz$

Integration constant: $U = k^{-1}u_* \ln z + \text{constant} = k^{-1}u_* \ln(z/z_{0u})$

 z_{0u} (redefined constant of integration) is "roughness length"

"Displacement height" d_{0u} $U = k^{-1}u_* \ln[(z - d_{u0})/z_{u0}]$

Not applied to the roughness layer (RL) $0 \le z \le 5h_0$

Parameters controlling z_{0u}

Smooth surfaces: viscous layer $\rightarrow z_{0u} \sim v / u_*$

Very rough surfaces: pressure forces depend on:

obstacle height h_0

velocity in the roughness layer $U_R \sim u_*$

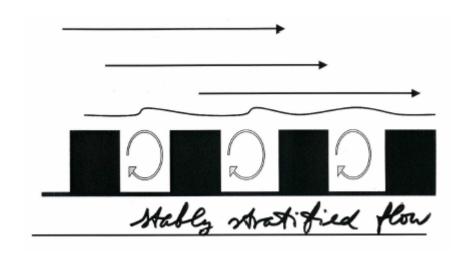
 z_{0u} = $z_{0u}(h_0, u_*)\sim h_0$ (in sand roughness experiments $z_{0u}\approx \frac{1}{30}h_0$)

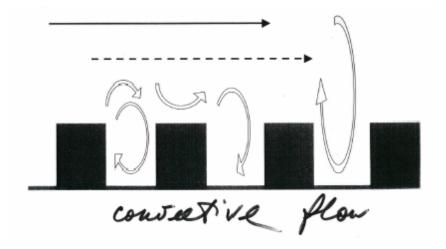
No dependence on u_* ; surfaces characterised by z_{0u} = constant

Generally $z_{0u} = h_0 f_0(\text{Re}_0)$ where $\text{Re}_0 = u_* h_0 / v$

Stratification at M-O length $L = -u_*^3 F_b^{-1}$ comparable with h_0

Stability Dependence of Roughness Length





For urban and vegetation canopies with roughness-element heights (20-50 m) comparable with the Monin-Obukhov turbulent length scale, L, the surface resistance and roughness length depend on stratification

Background physics and effect of stratification

Physically $z_{0u} = \text{depth of a sub-layer within RL } (0 < z < 5h_0)$ with 90% of the velocity drop from $U_R \sim u_*$ (approached at $z \sim h_0$)

From $\tau=K_{M(RL)}\partial U/\partial z$, $\tau\sim u_*^2$ and $\partial U/\partial z\sim U_R/z_{0u}\sim u_*/z_{0u}$

$$z_{0u} \sim K_{M(RL)}/u_*$$

 $K_M(RL) = K_M(h_0 + 0)$ from matching the RL and the surface-layer

Neutral: $K_M \sim u_* h_0 \implies \text{classical formula } z_{0u} \sim h_0$

Stable: $K_M = ku_*z(1 + C_uz/L)^{-1} \sim u_*L \implies z_{0u} \sim L$

Unstable: $K_M = ku_*z + C_U^{-1}F_b^{1/3}z^{4/3} \sim F_b^{1/3}\overline{z^{4/3}} \Longrightarrow z_{0u} \sim h_0(-h_0/L)^{1/3}$

Recommended formulation

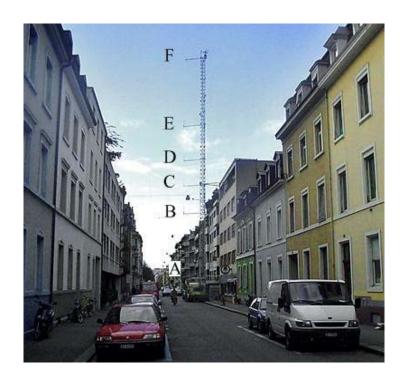
$$\frac{z_{0u}}{z_0} = \frac{1}{1 + C_{SS}h_0/L}$$

$$\frac{z_{0u}}{z_0} = 1 + C_{US} \left(\frac{h_0}{-L}\right)^{1/3}$$

Constants: $C_{SS} = 8.13 \pm 0.21$, $C_{US} = 1.24 \pm 0.05$

Experimental datasets

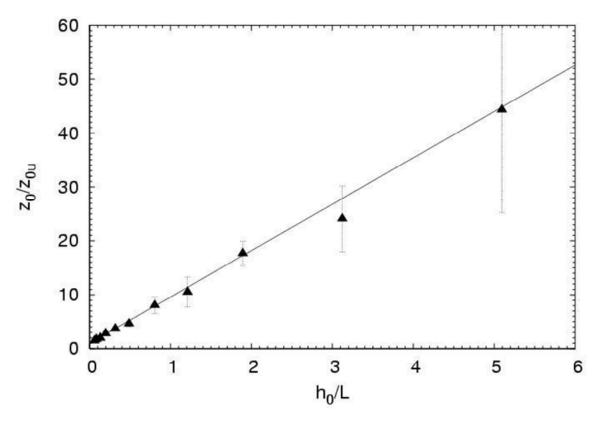
h ≈ 13 m, measurement levels 23, 25, 47 m



BUBBLE urban BL experiment, Basel, Sperrstrasse (Rotach et al., 2004)

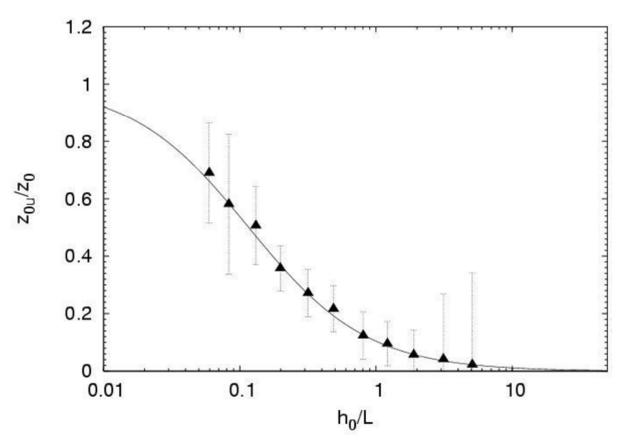
 $h \approx 14.6 \text{ m}$, measurement levels 3.6, 11.3, 14.7, 17.9, 22.4, 31.7 m

Stable stratification



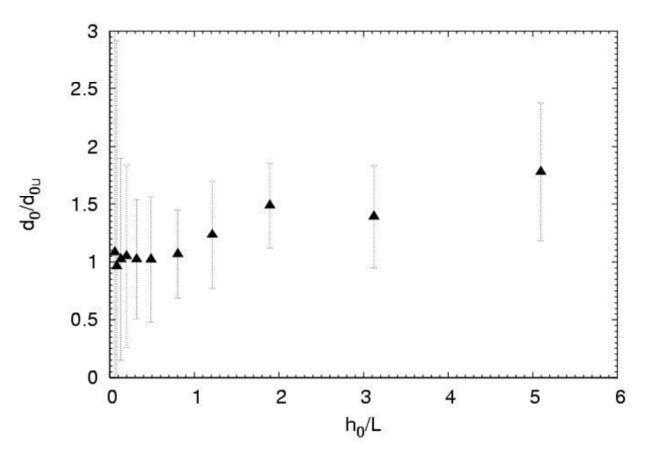
Bin-average values of z_0 / z_{0u} (neutral- over actual-roughness lengths) versus h_0/L in stable stratification for Boreal forest (h_0 =13.5 m; z_0 =1.1±0.3 m). Bars are standard errors; the curve is z_0 / z_{0u} =1+8.13 h_0 / L.

Stable stratification



Bin-average values of z_{0u} / z_0 (actual- over neutral-roughness lengths) versus h_0/L in stable stratification for boreal forest (h_0 =13.5 m; z_0 =1.1±0.3 m). Bars are standard errors; the curve is z_{0u} / z_0 = $(1+8.13h_0/L)^{-1}$.

Stable stratification



Bin-average values of the ratio $d_0/d_{0,neutral}$ versus parameter $h_0/L \, h_c/L$.

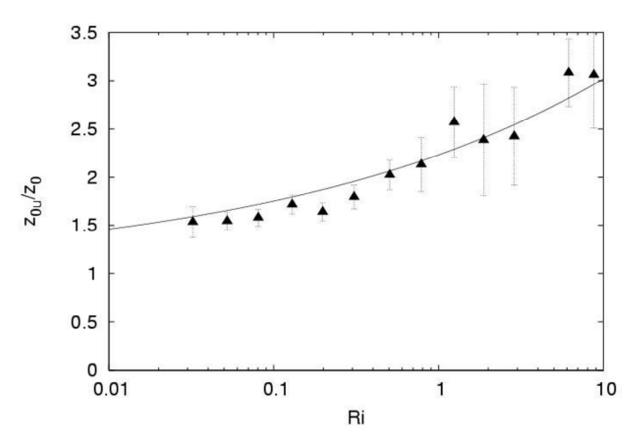
Unstable stratification

Convective eddies extend in the vertical causing $z_0 > z_{0u}$

VOLUME 81, NUMBER 5 PHYSICAL REVIEW LETTERS 3 AUGUST 1998

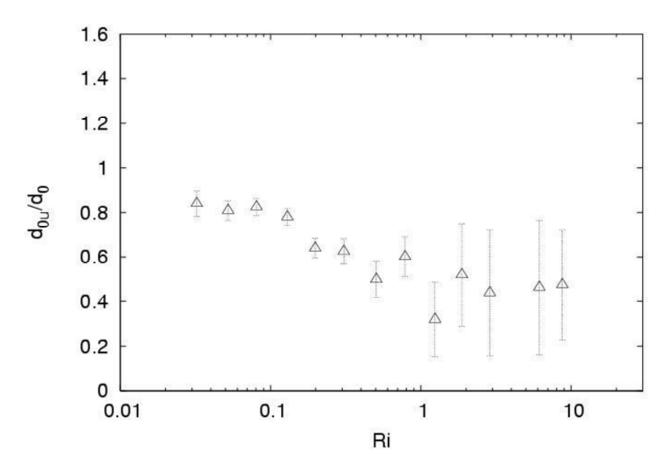
Y.-B. Du and P. Tong, Enhanced Heat Transport in Turbulent Convection over a Rough Surface

Unstable stratification



Bin-average values of z_{0u}/z_0 vs. Ri= $(g/\Theta_{31})(\Theta_{31}-\Theta_{18})h_0/U_{31}^2$, for the city of Basel ($h_0\sim14.6$ m; $z_0\approx1.2\pm0.4$) in unstable stratification. Bars are standard errors; the curve is $z_{0u}/z_0=1+1.23$ Ri^{3/14}.

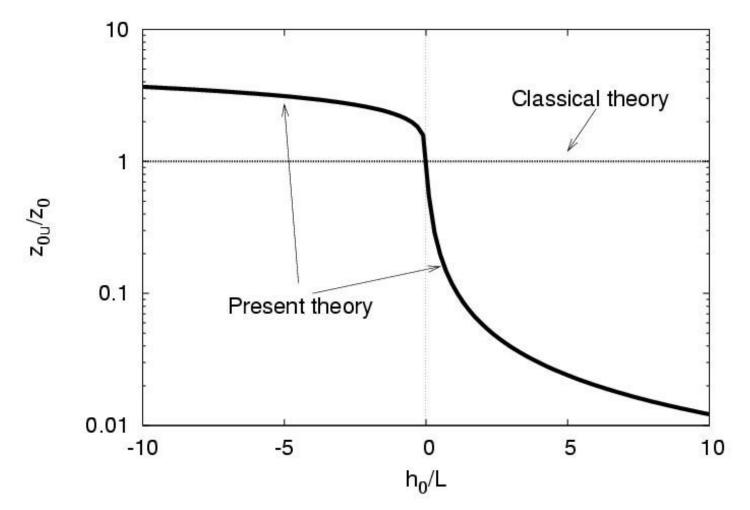
Unstable stratification



Actual over neutral displacement height, $d_0/d_{0,neutral}$, versus Ri=[(g/T_{ref})(θ_{31m} - θ_{18m})h_c/U_{31m}].

STABILITY DEPENDENCE OF THE ROUGHNESS LENGTH

in the "meteorological interval" -10 < h_0/L <10 after new theory and experimental data **Solid line**: z_{0u}/z_0 versus h_0/L **Dashed line**: traditional formulation $z_{0u}=z_0$



Conclusions: 1.2 Roughness length

- Traditional concept: roughness length fully characterised by geometric features of the surface
- New theory and data: essential dependence on hydrostatic stability especially strong in stable stratification
- Applications: to urban and terrestrial-ecosystem meteorology
- Practically sound: urban air pollution episodes in very stable stratification

1.3 NEUTRAL and STABLE ABL HEIGHT

Sergej Zilitinkevich ^{1,2,3}, Igor Esau³ and Alexander Baklanov⁴

- ¹ Division of Atmospheric Sciences, University of Helsinki, Finland
 - ² Finnish Meteorological Institute, Helsinki, Finland
- ³ Nansen Environmental and Remote Sensing Centre / Bjerknes Centre for Climate Research, Bergen, Norway
 - ⁴ Danish Meteorological Institute, Copenhagen, Denmark

References

- Zilitinkevich, S., Baklanov, A., Rost, J., Smedman, A.-S., Lykosov, V., and Calanca, P., 2002: Diagnostic and prognostic equations for the depth of the stably stratified Ekman boundary layer. *Quart, J. Roy. Met. Soc.*, **128**, 25-46.
- Zilitinkevich, S.S., and Baklanov, A., 2002: Calculation of the height of stable boundary layers in practical applications. *Boundary-Layer Meteorol.* **105**, 389-409.
- Zilitinkevich S. S., and Esau, I. N., 2002: On integral measures of the neutral, barotropic planetary boundary layers. *Boundary-Layer Meteorol.* **104**, 371-379.
- Zilitinkevich S. S. and Esau I. N., 2003: The effect of baroclinicity on the depth of neutral and stable planetary boundary layers. *Quart, J. Roy. Met. Soc.* **129**, 3339-3356.
- Zilitinkevich, S., Esau, I. and Baklanov, A., 200: Further comments on the equilibrium height of neutral and stable planetary boundary layers. *Quart. J. Roy. Met. Soc.*, **133**, 265-271.

Factors controlling PBL height

Basic factors:

- Deepening due shear-generated turbulence
- Swallowing by earth's rotation and negative buoyancy forces:
 - (i) flow-surface interaction, (ii) free-flow stability atmosphere

Additional factors:

- baroclinic shears (enhances deepening)
- large-scale vertical motions (both ways))
- temporal and horizontal variability

Strategy:

Basic regimes → theoretical models → general formulation

Scaling analysis

Ekman (1905): $h_E \sim \sqrt{K_M / |f|}$; K_M in three basic regimes:

$$h_E^2 \sim \frac{K_M}{|f|},$$
 $K_M \sim u_T l_T \sim \begin{cases} u_* h_E & \text{for TN} \\ u_* L_N & \text{for CN} \\ u_* L & \text{for NS} \end{cases}$

$$l_T \sim h_E \text{ in TN} \qquad L_N = u_* N^{-1} \text{ in CN} \qquad L = -u_*^3 F_{bs}^{-1} \text{ in NS}$$

Basic formulations

$$h_E \sim \begin{cases} u_* \mid f \mid^{-1} \text{Rossby, Montgomery (1935) TN} \\ u_* \mid fN \mid^{-1/2} \text{Pollard et al. (1973)} \end{cases}$$
 CN $u_*^2 \mid fB_s \mid^{-1/2} \text{Zilitinkevich (1972, 74) NS}$

Dominant role of the smallest scale

$$\frac{1}{h_E^2} = \frac{f^2}{(C_R u_*)^2} + \frac{N |f|}{(C_{CN} u_*)^2} + \frac{|fB_s|}{(C_{NS} u_*^2)^2}, \quad C_R, C_{CN}, C_{NS} = \text{constant}$$

Four parameters u_*, f, N, B_s ; hence two dimensionless numbrers:

$$\mu = u_* | fL |^{-1}$$
 and $\mu_N = N / | f |$

More generally, h_E dependents also on

- geostrophic shear $\Gamma = |\partial \mathbf{u}_g / \partial z|$ (increases h_E : Z & Esau, 2003)
- vertical velocity w_h ($\pm w_h t_{PBL}$, $t_{PBL} \sim h_E/u_*$: Z & Baklanov, 2002).

Hence, additional (usually unavailable) parameters:

$$\mu_{\Gamma} = \Gamma/N$$
 and $\mu_{w} = w_{h}/u_{*}$

How to verify *h***-equations?**

TN $h_E = C_R u_* / f$ transitions TN \rightarrow CN and TN \rightarrow NS Stage I

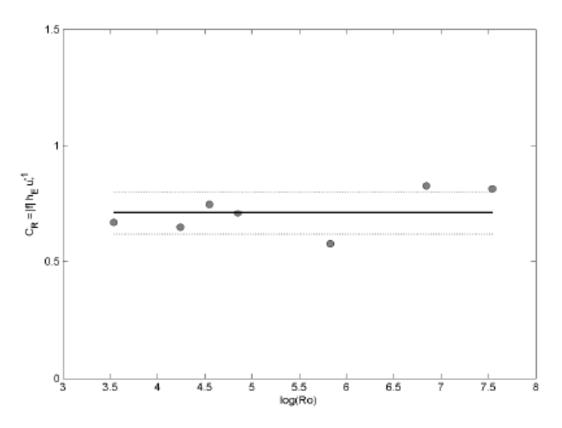
$$\left(\frac{u_*}{fh_E}\right)^2 = \begin{cases} C_R^{-2} + C_{CN}^{-2}\mu_N & \text{TN - CN} \\ C_R^{-2} + C_{NS}^{-2}\mu & \text{TN - NS} \end{cases}$$

to determine constants C_R , C_{CN} , C_{NS} from selected high-quality data

Stage II: Substitute constants in
$$\frac{1}{h_E^2} = \frac{f^2}{(C_R u_*)^2} + \frac{N |f|}{(C_{CN} u_*)^2} + \frac{|fB_s|}{(C_{NS} u_*^2)^2}$$

and verify against all available data

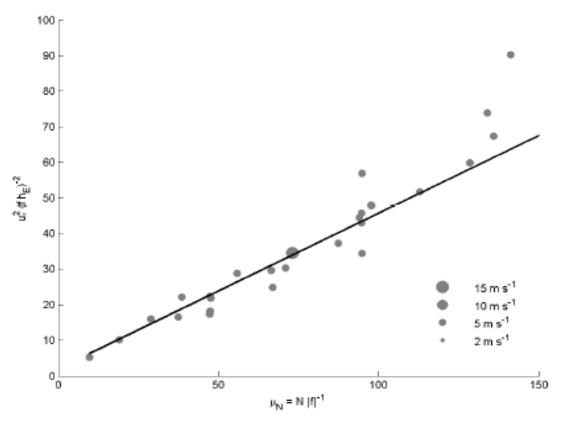
Stage I: Truly neutral ABL



Stage I TN ABL: C_R vs. Ro= $U_g(|f|z_{0u})^{-1}$ after LES

Bold line: C_R =0.7 \pm 0.1. Dotted line: standard deviation

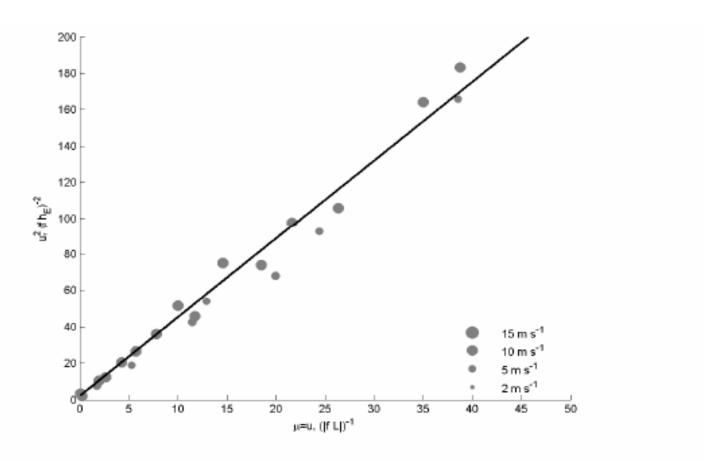
Stage I: Transition TN→CN ABL



Stage I Transition TN• CN: $u_*^2(fh_E)^{-2}$ vs. $\mu_N=N/\|f\|$, after LES:

Theory: $u_*^2 (fh_E)^{-2} = C_R^{-2} + C_{CN}^{-2} \mu_N$. Empirical C_R =0.6, C_{CN} =1.36

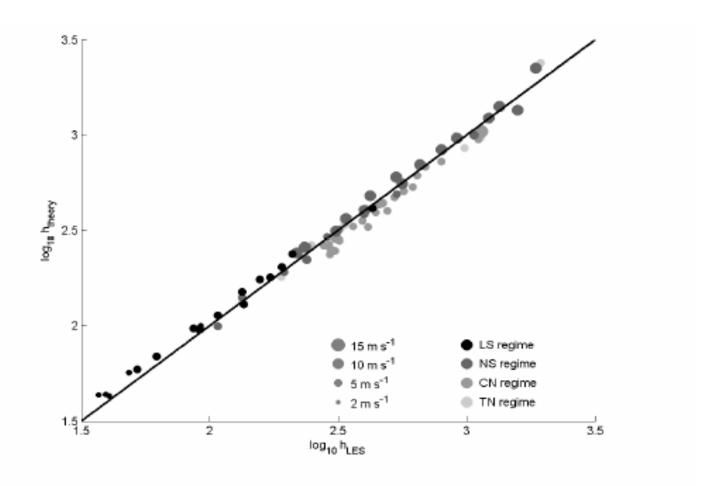
Stage I: Transition TN→NS ABL



Stage I Transition TN • NS: $u_*^2 (fh_E)^{-2}$ vs. $\mu = u_* | fL|^{-1}$, after LES.

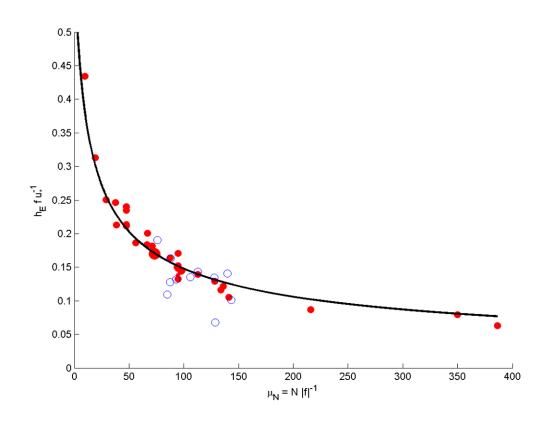
Theory: $u_*^2 (fh_E)^{-2} = C_R^{-2} + C_{NS}^{-2} \mu$, empirical $C_R = 0.6$, $C_{NS} = 0.51$

Stage II: General case



Stage II: Correlation: h_{theory} vs. h_{LES} after all available LES data

The height of the conventionally neutral (CN) ABL



Z & Esau, 2002, 2007: the effect of free-flow stability (N) on CN ABL height, $h_{E,}$, (LES – red, field data – blue, theory – curve). Classical theory overlooks it and overestimates h_{E} up to an order of magnitude.

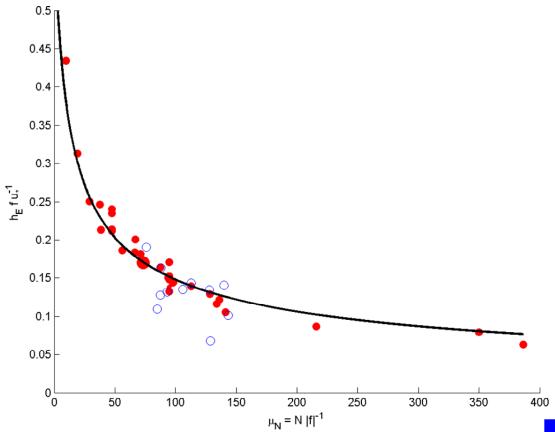
Conclusions: 1.3 SBL height

- \bullet h_E , depends on many factors \rightarrow multi-limit analysis / complex formulation
- difficult to measure: baroclinic shear (Γ), vertical velocity (w_h), h_E itself
- hence necessity to use LES, DNS and lab experiments
- baroclinic ABL: substitute $u_T = u_* (1 + C_0 \Gamma/N)^{1/2}$ for u_* in the 2nd term of

$$\frac{1}{h_E^2} = \frac{f^2}{C_R^2 \tau_*} + \frac{N |f|}{C_{CN}^2 \tau_*} + \frac{|f\beta F_*|}{C_{NS}^2 \tau_*^2} \quad (C_R = 0.6, C_{CN} = 1.36, C_{NS} = 0.51)$$

- account for vertical motions: $h_{E-corr} = h_E + w_h t_T$, where $t_T = C_t h_E / u_*$
- generally prognostic (relaxation) equation (Z. and Baklanov, 2002):

$$\frac{\partial h}{\partial t} + \vec{U} \cdot \nabla h - w_h = K_h \nabla^2 h - C_t \frac{u_*}{h_E} (h - h_E) \qquad (C_t = 1)$$



End

