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Part 1
Revised theory and improved 
parameterization of the Stably 

Stratified Atmospheric Boundary 
Layer  (SBL)  in climate, NWP, 
AQ, and wind energy models
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Motivation 



University of Helsinki

State of the art
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Basic types of the SBL
 

• Until recently ABLs were distinguished accounting only for Fbs= ∗F :  
neutral at ∗F =0 
stable at ∗F <0 

 
• Now more detailed classification:  

truly neutral (TN) ABL: ∗F =0, N=0 
conventionally neutral (CN) ABL: ∗F =0, N>0  
nocturnal stable (NS) ABL: ∗F <0, N=0 
long-lived stable (LS) ABL: ∗F <0, N>0 

 
• Realistic surface flux calculation scheme should be based on a model

applicable to all these types of the ABL 
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1.1 Mean profiles and surface fluxes
(Z and Esau, 2007)

Content
• Revision of the similarity theory for the stably stratified ABL

• Analytical approximations for the wind velocity and potential 
temperature profiles across the ABL

• Validation of new theory against LES and observational data

• Improved surface flux scheme for use in operational models
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Turbulence in atmospheric models
 

 
• turbulence closure – to calculate vertical fluxes: τr  and θF  through mean

gradients: dzUd /
r

 and dzd /Θ  
 
• flux-profile relationships – to calculate the surface fluxes: 0

2 | =∗∗ == zu ττ ,
0| =∗ = zFF θ  through wind speed =1U

1
| zzU =  and potential temperature

=Θ1 1
| zz=Θ  at a given level 1z    

 
• In NWP and climate models, the lowest computational level is 1z ~30 m 
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Neutral stratification (no problem)

From logarithmic wall law:  
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k, Tk  von Karman constants; uz0  aerodynamic roughness length for momentum;

0Θ  aerodynamic surface potential temperature (at uz0 )      [ 0Θ - sΘ  through Tz0 ] 
 
It follows: 2/1

1τ
1

01 )/(ln −= uzzkU , =1θF 2
0011 )/)(ln( −Θ−Θ− uT zzUkk  

1τ ∗= τ , 1θF ∗= F  when 1z 30≈  m << h     OK in neutral stratification   
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Stable stratification: current theory
(i) local scaling, (ii) log-linear Θ-profile both questionable
• When 1z  is much above the surface layer  1τ ∗≠ τ , 1θF ∗≠ F  

 

• Monin-Obukhov (MO) theory  =L
θβ

τ
F−

2/3

 (neglects other scales)   
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• ξ11 UM C+=Φ ,  ξ11 Θ+=Φ CH  from z-less stratification concept  
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• Ri 2)/)(/( −Θ≡ dzdUdzdβ    Ric = 2
1

1
1

2 −−
Θ UT CkCk     (unacceptable) 

 

• ~1UC 2, 1ΘC  also 2~  (factually increases with z\L)  
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Stable stratification: current parameterization
To avoid critical Ri modellers use empirical, heuristic correction 
functions to the neutral drag and heat/mass transfer coefficients

● Drag and heat transfer coefficients:   CD = τ /(U1)2 , CH = –Fθs/(U1∆Θ) 
 
● Neutral:                                     CDn, CHn  – from the logarithmic wall law  
 
 

    ● To account for stratification, correction functions (dependent only of Ri):  
 

fD (Ri1) = CD / CDn  and   fH (Ri1) = CH / CHn 
  
  Ri1= β(∆Θ)z1/(U1)2 (surface-layer “Richardson number”) is given parameter 
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Stable stratification: revised theory 
 
Zilitinkevich and Esau (2005)  two additional length scales besides L:  

NL =
N

2/1τ                         non-local effect of the free flow static stability 

fL =
||

2/1

f
τ         the effect of the Earth’s rotation  

 
N is the Brunt-Väisälä frequency at z>h (N ~10-2 s-1), f is the Coriolis parameter 
 

Interpolation: 
∗L

1 = 
2/12221






















+








+








f

f

N

N

L
C

L
C

L
 where NC =0.1 and fC =1 



University of Helsinki

 kzτ-1/2dU/dz  vs. z/L (a), z/ ∗L  (b) x nocturnal; o long-lived; □ conventionally neutral 
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 HΦ = (kTτ1/2z/Fθ)dΘ/dz  vs. z/L (a), z/ ∗L  (b)   x nocturnal; o long-lived 
 



University of Helsinki

       LES turbulent fluxes: solid lines  2/ ∗uτ = )exp( 2
3

8 ς− , θF / sFθ = )2exp( 2ς−  

     Approximation based on atmospheric data (e.g. Lenshow, 1988): dashed lines 

 

Vertical profiles of turbulent fluxes
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New mean-gradient formulation (no critical Ri) 
 

Flux Richardson number is limited:               =fRi
dzdU

F
/τ
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fRi 2.0≈  
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MΦ  vs. ∗= Lz /ξ , after LES DATABASE64 (all types of SBL). Dark grey 
points for z<h; light grey points for z>h; the line corresponds to .21 =UC  
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  HΦ  vs. ∗= Lz /ξ  (all SBLs). Bold curve is our approximation: 8.11 =ΘC , 
2.02 =ΘC ; thin lines are =ΦH  0.2 2ξ  and traditional =ΦH 1+2ξ .  
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Ri vs. Lz /=ξ , after LES and field data (SHEBA - green points). Bold 
curve is our model with 1UC =2, 1ΘC =1.6, 2ΘC =0.2. Thin curve is HΦ =1+2ξ . 
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Mean profiles and flux-profile relationships  
  

 
We consider wind/velocity and potential/temperature functions 
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Our analyses show that UΨ  and ΘΨ  are universal functions of ∗= Lz /ξ  
 

6/5ξUU C=Ψ ,   5/4ξΘΘ =Ψ C ,  with UC =3.0  and  ΘC =2.5 
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Wind-velocity function UΨ )/ln( 0
2/1

uzzUk −= −τ  vs. ∗= Lz /ξ ,  after 
LES DATABASE64 (all types of SBL). The line: 6/5ξUU C=Ψ , UC =3.0. 
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Pot.-temperature function ΘΨ ( ) )/ln()( 0
1

0
2/1

uzzFk −−Θ−Θ= −−
θτ  

(all types of SBL). The line: 5/4ξΘΘ =Ψ C   with UC =3.0  and  ΘC =2.5. 
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Analytical wind and temperature profiles (SBL) 
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where NC =0.1 and fC =1. Given U(z), Θ (z) and N, these equations allow
determining τ , θF , and 12/3 )( −−= θβτ FL , at the computational level z.  
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Given τ , θF , surface fluxes are calculated using empirical dependencies  
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The equilibrium ABL height, Eh , is determined diagnostically (Z. et al., 2006a): 
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The actual ABL height, after prognostic equation (Z. and Baklanov, 2002):  
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Conclusions 1.1: mean profiles & surface fluxes  
  
Background:  Generalised scaling accounting for the free-flow stability,  

No critical Ri (TTE closure) 
Stable ABL height model 

  
Verified against  

LES DATABASE64 (4 ABL types: TN, CN, NS and LS)  
Data from the field campaign SHEBA 

 
Deliverable 1: analytical wind & temperature profiles in SBLs 
 
Deliverable 2: surface flux scheme for use in operational models 
 
Requested: (i) roughness lengths and (ii) ABL height  
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1.2 STRATIFICATION EFFECT 
ON THE ROUGHNESS LENGTH

S. S. Zilitinkevich1,2,3, I. Mammarella1,2,
A. Baklanov4, and S. M. Joffre2

1.   Atmospheric Sciences,  University of Helsinki,  Finland
2.      Finnish Meteorological Institute,    Helsinki,    Finland
3.   Nansen  Environmental and Remote  Sensing Centre /

Bjerknes Centre for Climate Research, Bergen, Norway
4. Danish Meteorological Institute, Copenhagen, Denmark
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Reference (1.2)

S. S. Zilitinkevich, I. Mammarella, A. A. Baklanov, and S. M. 
Joffre, 2007: The roughness length in environmental fluid 
mechanics: the classical concept and the effect of 
stratification. Submitted to Boundary-Layer Meteorology.
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Content (1.2)
 

• Roughness length and displacement height:  
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• No stability dependence of uz0  (and ud0 ) in engineering fluid mechanics: 
neutral-stability 0z  = level, at which )(zu  plotted vs. zln  approaches zero; 

0z 25
1~  of typical height of roughness elements, 0h      

 

• Meteorology / oceanography: 0h  comparable with MO length      
sF

uL
θβ−

= ∗
3

 
 

• Stability dependence of the actual roughness length, uz0 : 
       uz0 < 0z  in stable stratification;   uz0 > 0z  in unstable stratification 
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Surface layer and roughness length

Self similarity in the surface layer (SL) 5 0h <z< 110− h  
Height-constant fluxes:      τ

05| hz=≈ τ 2
∗≡ u   

∗u  and z serve as turbulent scales:   ∗uuT ~ , zlT ~  
Eddy viscosity  ( 4.0≈k )    MK  (~ TT lu )= zku∗   
Velocity gradient        kzuKzU M /// ∗==∂∂ τ   
Integration constant:     constantln1 += ∗

− zukU )/ln( 0
1

uzzuk ∗
−=  

uz0  (redefined constant of integration) is “roughness length” 
“Displacement height” ud0     [ ]00

1 /)(ln uu zdzukU −= ∗
−  

Not applied to the roughness layer (RL) 0<z<5h0 
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Parameters controlling z 0u

Smooth surfaces: viscous layer   uz0 ~ ∗u/ν  

 

Very rough surfaces: pressure forces depend on:  
obstacle height 0h   
velocity in the roughness layer RU ~ ∗u  

 

uz0 = uz0 ( 0h , ∗u )~ 0h  (in sand roughness experiments uz0 030
1 h≈ ) 

 

No dependence on ∗u ; surfaces characterised by uz0 = constant       
 

Generally  uz0 = 0h )(Re00f    where  Re0 = ν/0hu∗  
 

Stratification at M-O length 13 −
∗−= bFuL  comparable with 0h  
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Stability Dependence of Roughness Length

For urban and  vegetation canopies with roughness-element heights 
(20-50 m) comparable with the Monin-Obukhov turbulent length scale, 
L, the surface resistance and roughness length depend on stratification
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Background physics and effect of stratification

Physically         =uz0  depth of a sub-layer within RL ( 050 hz << )  
with 90% of the velocity drop from ~RU ∗u  (approached at 0~ hz )  
 

From zUK RLM ∂∂= /)(τ , 2~ ∗uτ  and zU ∂∂ / ~ uR zU 0/ ~ uzu 0/∗  
 

∗uKz RLMu /~ )(0  
 

)RL(MK = )0( 0 +hKM  from matching the RL and the surface-layer 
 

Neutral: MK 0~ hu∗   ⇒ classical formula  00 ~ hz u   
Stable:  

1)/1( −
∗ += LzCzkuK uM  Lu∗~   ⇒ Lz u ~0  

Unstable: 3/43/11 zFCzkuK bUM
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000 )/(~ Lhhz u −  
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Recommended formulation

Neutral ⇔ stable   
LhCz
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Constants: 13.8=SSC ±0.21, =USC 1.24±0.05 
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Experimental datasets Experimental datasets 

Sodankyla Meteorological 
Observatory, Boreal forest (FMI)

BUBBLE urban BL experiment, Basel, 
Sperrstrasse (Rotach et al., 2004)

h ≈ 13 m, measurement levels 23, 25, 47 m h ≈ 14.6 m, measurement levels 3.6, 11.3, 14.7, 17.9, 22.4, 31.7 m
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Stable stratification

 
    Bin-average values of uzz 00 /  (neutral- over actual-roughness lengths) versus h0/L in stable stratification for  
        Boreal forest (h0=13.5 m; 0z =1.1±0.3 m). Bars are standard errors; the curve is uzz 00 / = Lh /13.81 0+ . 
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Stable stratification

 
Bin-average values of 00 / zz u  (actual- over neutral-roughness lengths) versus h0/L in stable stratification for boreal  
forest (h0=13.5 m; 0z =1.1±0.3 m). Bars are standard errors; the curve is 00 / zz u = 1

0 )/13.81( −+ Lh .       
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Stable stratification

 
Bin-average values of the ratio neutraldd ,00 /  versus parameter Lh /0 hc/L. 
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Unstable stratification
Convective eddies extend in the vertical causing uzz 00 >  

 
VOLUME 81, NUMBER 5 PHYSICAL REVIEW LETTERS 3 AUGUST 1998 

Y.-B. Du and P. Tong, Enhanced Heat Transport in Turbulent Convection over a Rough Surface 
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Unstable stratification
 
 

 
Bin-average values of 00 / zz u  vs. Ri=(g/Θ31)(Θ31–Θ18)h0/ 2

31U , for the city of Basel (h0~14.6 m;  
         0z ≈1.2±0.4) in unstable stratification. Bars are standard errors; the curve is 00 / zz u =1+1.23 Ri3/14.     
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Unstable stratification
 
 

 
Actual over neutral displacement height, neutraldd ,00 / , versus  Ri=[(g/Tref)(θ31m- θ18m)hc/U31m].  
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STABILITY DEPENDENCE OF THE ROUGHNESS LENGTH
in the “meteorological interval” -10 < h0/L <10 after new theory and experimental data
Solid line:  z0u/z0 versus h0/L                 Dashed line: traditional  formulation z0u = z0
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Conclusions: 1.2 Roughness length

• Traditional concept: roughness length fully characterised by 
geometric features of the surface

• New theory and data: essential dependence on hydrostatic stability 
especially strong in stable stratification 

• Applications: to urban and terrestrial-ecosystem meteorology 

• Practically sound: urban air pollution episodes in very stable 
stratification 
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1.3 NEUTRAL  and  STABLE ABL  HEIGHT

Sergej Zilitinkevich 1,2,3, 
Igor Esau3 and Alexander Baklanov4

1 Division of Atmospheric Sciences, University of Helsinki, Finland
2 Finnish Meteorological Institute, Helsinki, Finland 

3 Nansen Environmental and Remote Sensing Centre / Bjerknes 
Centre for Climate Research, Bergen, Norway

4 Danish Meteorological Institute, Copenhagen, Denmark
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Factors controlling PBL height
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Scaling analysis 
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Dominant role of the smallest scale
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How to verify h-equations?
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Stage I: Truly neutral ABL
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Stage I: Transition TN CN ABL
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Stage I: Transition TN NS ABL
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Stage II: General case
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The height of the conventionally neutral (CN) ABL
 

 

Z & Esau, 2002, 2007: the effect of  free-flow stability (N) on CN ABL height, 
hE,, (LES – red, field data – blue, theory – curve). Classical theory  overlooks 
it and overestimates hE up to an order of magnitude.
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● Eh , depends on many factors  multi-limit analysis / complex formulation 
  
● difficult to measure: baroclinic shear (Γ), vertical velocity ( hw ), Eh  itself 
 
● hence necessity to use LES, DNS and lab experiments  
 
 
 

● baroclinic ABL: substitute Tu = *u (1+C0Γ/N)1/2 for *u  in the 2nd term of 
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● account for vertical motions:  corr−Eh = Eh + hw Tt ,      where Tt = tC Eh / *u  
 
● generally prognostic (relaxation) equation (Z. and Baklanov, 2002):  
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Conclusions: 1.3 SBL height
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