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Content

Large eddies (convective winds) enhance mixing
Homogeneous surfaces: 

Shear-free convection cells 
Sheared convection rolls 

Heterogeneous surfaces and heat islands:
polynias / big cities
leads

Future work: improved CBL module and flux-
parameterization
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Closed cloud cells over the Atlantic Ocean
Low wind convection
Radiative cooling of the upper 
boundary of clouds causes 
narrow cold descending plumes 
surrounded by warmer updraughts
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Open cloud cells over the Pacific Ocean

Low wind convection
Narrow warm uprising 
plumes surrounded by 
colder downdraughts, 
driven by the positive 
buoyancy flux over 
warm sea surface
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Cloud “streets” over the Amazon River
Strong wind: shear-generated convective rolls 
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Convective-shear waves
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Perturbation analysis predicts generation of roll-type structures 
in the plane perpendicular to the mean wind (Elperin et al.)
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Turbulent convection in laboratory
Semi-organised circulation in a box with heated bottom (Rayleigh-Benard

apparatus): vertical (left) and horizontal (right) cross-sections (Elperin et al.)
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SHEAR-FREE CONVECTION OVER WIDE HEATED 
AREAS: THE INFLUENCE OF SEMI-ORGANISED 
EDDIES ON THE HEAT / MASS TRANSFER AT 

THE SURFACE
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Large buoyancy-driven eddies in CBLs
⇓

“Convective winds”: convergence IBL-type flows towards 
plume axes near the surface 

⇓

Local sears in IBLs enhance mixing 
⇓

Stronger turbulent fluxes
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Large convective eddy
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Williams and Hacker (1992) airborne measurements: Arrows show the large-eddy velocity field 
(subtracting mean wind). Solid lines show deviations of potential temperature θ from its large-

eddy averaged value <θ>. The iso-surface θ-<θ>=0 marks the side walls of the updraught.
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LES “portrait” of the 1st characteristic 
(most energetic) eddy in shear-free CBL

Solid contours in horizontal 
plane mark up-draughts with 
w from 0.14 to 0.84 m/s. The 
maximum updraught velocity 
is 1.2 m/s, maximum hori-
zontal velocity is 2.8 m/s. 
Dashed contours mark down-
draughts (varying from -0.16 
to -0.8 m s-1). Bold curves 
with arrows in y,z plain show 
streamlines. The domain size 
is given in km.
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Horizontal cross-sections of plumes and 
downdraughts over smooth and rough surfaces
upper snapshots – surface layer, below – upper CBL; left – smooth, right – very rough
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Prior large-eddy shear models

Deardorff´s scaling: CBL depth h, convective velocity W*=(βFθsxh)1/3

Resistance coefficients:           U*/W* , Fθsx/(W*∆θ) versus    h/z0u

• Schumann (1988) 1-layer model, dominant role of buoyancy forces 

• Sykes et al. (1993) 1-layer model, dominant role of large-eddy shears

• Zilitinkevich, Grachev & Hunt (1998) 2-layer buoyancy + shear model 

Limited applicability; insufficient accuracy over very rough surfaces
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New model
Large eddy life time considerably exceeds h/W*~ 20 min
Large-scale convergence flows are internal boundary layers (IBLs):

W*dhI/dx=0.24Wc(z=hI)
Locally equilibrium turbulence determines x-dependent values of
τ(z)=u*

2(x), Fθsx(x), large-eddy MO length: L(x)= τ 3/2(βFθsxh)-1

Eddy viscosity / conductivity             K~z[u*+Constant W*(z/h)1/3]
Solution for area-averaged fluxes:           U*

4 =<τ2>, Fθs=< Fθsx> 
Very rough surfaces: surface shear layer diminishes
effective roughness length: z0 /z0u=1+C0C(z0u/L)1/3
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IBL within the large  eddy: (a) low roughness
Typical height of roughness elements smaller than the MO length scale 

Two-layer structure: logarithmic + free-convection vertical profiles  
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IBL within the large  eddy: (b) large roughness
Typical height of roughness elements larger than the MO length scale 

One-layer structure; essential stability dependence of the roughness length 
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Resistance coefficient U*/W* vs. h/z0u
Blue symbols show field data; red symbols - LES (NERSC data with error bars)
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Heat transfer coefficient U*/W* vs. h/z0u
Blue symbols show field data; red symbols - LES (NERSC data with error bars)



University of Helsinki

Comparison of heat transfer models
Solid line – our model validated against field data and LES (CBLs over natural rough 
surfaces); doted line – classical heat transfer law: Nu=0.14 Ra1/3 (lab experiments)
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Conclusions and future work
Failure of the classical local theory 
Key role of organised structures:
• not to be confused with largest turbulent eddies
• notice inverse energy cascade
New physics at large roughness:   
• Diminishing logarithmic sub-layer
• Stability dependence of the effective roughness length
Future work   
• Theory and its validation for sheared convection
• Improved parameterization of surface fluxes  
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CHAOS GENERATES ORDER
Large-scale convective structures are not turbulence: they are essentially regular 

motions fed by the convective energy production through the inverse energy cascade

over heat island over vide heated area
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