International course of lectures "Geophysical turbulence and boundary layers: nature, theory and role in Earth's systems"

University of Helsinki and Finnish Meteorological Institute "Dynamicum", Erik Palménin aukio 1, 00561 Helsinki, Finland, 27 May – 1 June 2007

Supported by

EU Marie Curie Chair Project MEXC-CT-2003-509742 "Planetary boundary layers – Theory, Modelling and Role in Earth Systems" (TMRES), NordForsk (former NorFA) Nordic Network on Fine-scale Atmospheric Modelling (NetFAM); NORDPLUS Neighbour Project 1777039/V11 "Boundary-layer Phenomena over Ice Covered Arctic Seas"; EU TEMPUS JEP 26005 "Development of a Competency-based Two-level Curricula in Meteorology"; and EU Marie Curie Chair Project MEXC-CT-2005-025353 "Fundamental and Conceptual Aspects of Turbulent Flows" (TURBCONG)

Organising Committee

A. Belotserkovski (RSHU), S. Joffre (FMI), H. Savijarvi (UH), M. Sofiev (FMI; Course Director), S.Zilitinkevich (UH & FMI)

Summary

The main objective of this course is to summarise current knowledge on the nature, theory and parameterisation of geophysical turbulence, planetary boundary layers (PBLs) and meso-scale boundary-layer type flows relevant to numerical modelling of weather, climate, air-pollution and both terrestrial and marine ecosystems. From the physical point of view, these are the very high Reynolds number, stratified, rotating, turbulent flows. Their improved parameterisation is becoming a challenging problem in view of new demands from operational modelling employing very high resolution general circulation models (GCMs), especially the coupled atmosphere-soil/sea/ice-biosphere model suites needed to realistically predict local consequences of the climate change. The course covers the following main topics:

- Nature and theory of geophysical turbulence and PBLs
- Turbulence closure problem
- Radiation and turbulence PBLs
- Semi-organised structures and fully chaotic turbulence: similarity and difference
- Observation of the turbulent and mean structure of PBLs
- Large-eddy simulation (LES) of PBLs
- Flow-surface interaction and turbulent fluxes at the surface¹
- Turbulent and mean structure of air flows within vegetated and urban canopies
- Meso-scale and urban turbulent flows
- Weather and climate problems essentially dependent on PBLs
- PBLs and turbulence in ecosystem modelling

At the end of the course we arrange a special session on modern aspects of meteorological education (in the scope of the above EU TEMPUS JEP).

¹ Air-sea interaction has been the subject of a recent summer school (28 August – 1 September 2006, FMI, Helsinki).

Programme of the course

28.05.2007			
Nature and theory of geophysical turbulence and PBLs			
Introduction to fundamentals of turbulence 9:00 -	10:30 Prof. Arkady Tsinober, UCL, UK		
New effects in turbulent aerosol transports: theory, lab and field experiments 10:45 –	Dr. Igor Rogachevskii, BGU, IL 12:15		
PBLs in stable, neutral and unstable stratification: scaling, data and analytical models, surface-flux algorithms 13:15 – 1 15:00 – 1	ata Prof. Sergej Zilitinkevich, UH / FMI, FI 4:45 6:30		
Discussion 16:30 – 1	17:30 A. Tsinober, I. Rogachevskii, S. Zilitinkevich		
29.05.2007 Turbulence closure problem for stable stratification:			
Turbulence energetics and critical Richardson number Energy and flux-budget (EFB) turbulence closure model for state, homogeneous and heterogeneous regimes 9:00 – 1	Prof. Sergej Zilitinkevich, UH / FMI, FI steady- 10:30		
Radiation and turbulence in PBLs			
Radiative heat transfer and its role in stable PBLs 10:45 -	12:15 Prof. Hannu Savijärvi, UH, Fl		
Semi-organised structures and fully chaotic turbulence: similarity and difference, LES			
Semi-organised structures in convective BL 13:15 – 1	4:45 Dr. Nathan Kleeorin, BGU, IL		
Large-eddy simulations of PBLs, LES "portraits" of typical se organised eddies 15:00 – 1	emi- Dr. Igor Esau, NERSC, NO 16:30		
Discussion 16:30 – 1	17:30 S. Zilitinkevich, H. Savijarvi, N. Kleeorin, I. Esau		
<u>30.05.2007</u> Observation of the turbulent and mean structure of PBLs			
What do we want to measure in turbulence, why and how? 9:00 -	Prof. Arkady Tsinober, UCL, UK 10:30		

Flow-surface interaction and turbulent fluxes at the surface

Interaction of air-flow with ice and snow	10:45 – 12:15	Dr. Timo Vihma, FMI, FI
Stability dependence of the roughness length and displacement		Dr. Ivan Mammarella, UH. FI
height	13:15 – 14:00	
Turbulence and transports in vegetation canopies	14:15 – 15:45	Prof. Timo Vesala, UH, FI
Modelling of turbulence within vegetation canopies	16:00 – 16:45	Dr. Andrey Sogachev, UH, FI
Discussion	16:45 – 17:30	A. Tsinober, T. Vihma, I. Mammarella,
		T. Vesala, A. Sogachev

31.05.2007

Turbulent and mean structure of air flows within vegetated and urban canopies

Meso-scale meteorological models: correcting mo limitations. Characteristics of urban PBLs Urbani	odel errors and zed meso-scale	Prof. Robert Bornstein, SJSU, USA
meteorological models Global-warming induced	reverse-reactions:	
summer daytime coastal-cooling	9:00 - 10:30	
	10:45 – 12:15	

Meso-scale and urban turbulent flows (cont)

Boundary-layer aspects in shallow-water approxim	ations	Prof. Arakel Petrosyan, IKI RAS, RU
	13:15 – 14:00	
Modelling of boundary-layer type flows: sea breeze	es, katabatic	Prof. Hannu Savijärvi, UH, FI
winds and internal boundary layers	14:00 – 15:30	
Urban boundary layers: experience of EU-FUMAP	EX	Dr. Alexander Baklanov, DMI, DK
	15:45 – 16:45	
Discussion	16:45 – 17:30	R. Bornstein, A. Petrosyan,
		H. Savijarvi, A. Baklanov

1.06.2007

Weather and climate and ecosystem modelling problems essentially dependent on PBLs

The role of the PBL parameterization in operational	numerical	Dr. Carl Fortelius, FML FL
The fole of the F DE parameterization in operational numerical		Dr. Odri i Ortendo, i Wil, i i
weather prediction: HIRLAM experience	9:00 – 10:30	
The role of the PBLs parameterization in operational	al air quality	Dr. Mikhail Sofiev, FMI, FI
modelling: SILAM experience	10:45 - 12:15	
High resolution atmosphere-sea-water ecosystem	model suite:	Dr. Rein Tamsalu. UT. EE
	10.15 14.45	, - ,
the general architecture and the role of turbulence	13:15 - 14:45	
Discussion	15:00 – 16:00	C. Fortelius. M. Sofiev. R. Tamsalu

Glossary

BGU = Ben Gurion University of the Negev DMI = Danish Meteorological Institute FMI = Finnish Meteorological Institute GCM = general circulation model IG RAS = Institute of Geography, Russian Academy of Sciences IKI RAS = Institute of Space Research, Russian Academy of Sciences

LES = large-eddy simulation

NERSC = Nansen Environmental and Remote Sensing Centre PBL = planetary boundary layer SJSU = San Jose State University UCL = University College, London UH = University of Helsinki (Division of Atmospheric Sciences) USF = University of South Florida UT = University of Tartu