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My Research Interests

Observation, analysis, & simulation of polluted
coastal urban boundary layers (today’s lectures)

— How urbanization & pollution create new urban climate

— How new urban climate controls spread of pollution
within & downwind of city

Emergency response facility for NYC
— Meso- and canyon- met networks

— Meso- and canyon met and air quality models

Obs of climate change in coastal areas



Seminar Series

Part 1: Observations of urban PBLs
Part 2: Meso met-models of PBLs

— Formulations

— Problems
Part 3: Meso met-models of uPBLs

— Formulations

— Applications



OVERVIEW OF PART 1

WHY STUDY URBAN AREAS
CAUSES OF URBAN CLIMATE

URBAN CLIMATE ELEMENTS
— TEMP
— WIND: MEAN & TURBULENCE
— MOISTURE & STORMS

AIR QUALITY IMPACTS
— MESOSCALE
— MICROSCALE



HUMAN-HEALTH IMPACTS OF
URBAN CLIMATE

UHI - THERMAL STRESS

PRECIP ENHANCEMENT - FLOODS

URBAN-INDUCED INVERSIONS -
POLLUTED LAYERS

TRANSPORT & DIFF PATTERNS FOR
— POLLUTION EPISODES
— EMERGENCY RESPONSE



uPBL sub-layers

Urban mixing layer
— Non-homogeneous
— Non-stationary

Urban SfcBL: has several sub-layers

Urban surface: where 1s 1t (1n our models)?
— ground
— roughness length, z
— displacement height, d
— rooftop
— Top of roughness sub-layer (see next slide)

Urban sub-surface: consists of
— ground

— walls
— roofs



uSBL sub-layers (next slide)
Canyons (UCL)

— Between buildings (extends from 0-h)
— Flow 1s f(W/H ratio) =

skimming, vortex, or isolated-obstacle flow
Canopy layer (or roughness sub-layer)
— Flux-blending layer (extends from h to 3h)
— M-O theory not valid = u.(z)
Inertial sub-layer

— Fluxes have blend (> 3h)
— M-O theory is valid = u. not f(z)



Rt | ok II:III- -~ e o P T

Figure 1. Schematic of cimatic scales and vert-
cal layers found in urban araas




IMPORTANT THEME 1:
URBAN WX ELEMENTS

Battles b/t conflicting effects
Long-term climo-averages —2>

small- As b/t 2 large conflicting-effects =2
confusion 1n literature

Must ask right-question =2
intelligent data-segmentation -

better understanding of phy-processes



URBAN Wx-ELEMENTS

Monatomic effects

VISIBILITY: decreased
PBL NIGHT STABILITY: neutral

TURBULENCE: increased (both mechanical &
thermal)

FRONTAL SPEED (synoptic & sea breeze): slowed
More-complex effects

TEMP & PRECIP: increased (UHI) or decreased (UCI)

Wi
Wi

(N
(N
JUNDERSTORMS: triggered or split

D SPEED: increased or decreased

D DIRECTION: con- & divergence



URBAN HEAT ISLAND (UHI)

Most-studied urban climate impact

Causal factors (previous slide) =

reduced nocturnal urban-cooling =

urban areas remain-warmer than rural areas =2
UHI forms

Mostly studied at: 2 m, night, mid-lat

uPBL can be plume (windy atm) or dome (calm V)
Satellite obs of radiative sfc-T =

strong daytime sfc-UHIs



NEW URBAN-CLIMATE: CAUSES

GRASS/SOIL - CONCRETE/BUILDINGS -
NEW SOIL MOISTURE CONTENT >
NEW THERMAL INERTIA -
ALTERED SFC HEAT & MOSITURE FLUXES
FUEL CONSUMPTION (next slide)->

ATM POL
BUILDINGS (

LUTION, E

FAT, AND MOISTURE

ATM POL

LUTION=->

LOWER SKY-VIEW FACTORS) &

ALTERED (SOLAR & IR) RADIATIVE FLUXES



Ratio (r) of anthro heat-flux to sfc net-radiation:
some cold-cites in winter have r > 1

Average Annual Anthropogenic Heat Flux Densities (Qp) Of Urban Areas!

Per
Population Capita
Density Energy
(persons lse Qe QUi
Ubby¥ Area Year km=2 x 107 (GJ y-1) (W m—2) (W m—?2) Qp/Qy

Manhattan (409N) 1965 29.8 169 159 93 1.71
Moscow (56°N) 1970 7.3 530 127 42 3.02
Montreal (459N) 1961 14.1 221 o9 52 1.90
Budapest (479N) 1970 11.5 118 43 46 0.93
Hong Kong (22°N) 1971 37.2 28 33 0.30
Osaka (359N) 1970-74 14.6 55 26

Los Angeles (34°N) 1965-70 2.0 331 21 0.19
“est Berlin (52°N) 1967 9.8 67 21 57 0.37
¥aucouver (499N) 1970 5.4 112 19 57 0.33
Ssheffield (53°N) 1952 10.4 58 19 56 0.34
Fairbanks (64°N) 1967-75 0.55 314 & 18 0.33

Sources: Bowling and Benson (1978); Kalma and Newcombe (19Y76}; Ojima
and Moriyvama (1982); Oke (1978b); SMIC {1971).




Sacramento (sub-sic, stc, & atm) obs by

Imamura (1992): max-UHI at
2-m at night & Sfc during day (largest value)

18 24
t(hour)




Daytime Sacramento-UHIs:
2 m (left) UHI (2°C) << sfc (right) UHI (20°C)
Note: Irrigated urban treed-park (inner square) 1s cool area
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NYU/NYC uPBL-STUDY

10 IOPs
— FIVE DAYS EACH (DAY AND NIGHT)

— ALL SEASONS
80 10-m V-SITES - HOURLY V-CHARTS
PIBALS:

— 1-4 THEODOLITES (10R 2 BALLOONS)

— 15 SEC OBS 2 37.5m z-RESOLUTION
HELICOPTER SOUNDINGS (ABOUT 1000)
— T (next 2 slides), q, & SO,

NOAA TETROONS: ABOUT 200
EMISSIONS

- 1 KM X 1 KM
— SO2, HEAT, & MOISTURE



NYC nocturnal UHI-dome (V 1nto page):
Note: > warm, neutral, polluted uPBL
> no urban sfc-inversion
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Fig. 5 Vertical temperature cross section (°C) over New York City area (NYU fb
Brooklyn) on 16 July 1964. Shaded areas indicate isothermal and inversion layers
(from Bornstein, 1968).




NYC AVERAGE NOCTURNAL UHI (z):
note cross-over layer (UHI < 0)-aloft due to RFD, sinking rural air, ??

URBAN TEMPERATURE EXCESS (°C)

Fig. 7 Average urban heat island over New York City as function of height. llori-
zontal bars show plus and minus one standard deviation (from Bornstein, 1968).




vs. St. Louis nocturnal urban-plume

23 MAY 1967
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Downtown Cincinnati Suburban

6 Vertical temperature cross section (°F) over Cincinnati area on 23 May
(from Clarke and McElroy, 1970).




DAY TIME uPBL

NEUTRAL STABILITY
IN BOTH URBAN & RURAL PBLs
WEAK ATM-UHIs

BUT:

— REGIONAL ELEVATED-INVERSIONS
BOW-UPWARDS DUE TO ENHANCED
URBAN CONVECTION

— STRONG SFC-UHIs (next slide)



SATELLITE-DERIVED DAYTIME UHIs (sfc radiative-T) for
NYC (left) & Washington, DC (right) (from S. Stetson)

12° F above median Inset in upper corner is

a detail view of the Convention |
Center and the hottest area in :
Washington.

. 8° F above median
- 6° F above median

3° F above median

Temperature data from LANDSAT's thermal band is combined with an aerial photograph to
illustrate the heat island characteristics of Washington, DC. In the picture vegetation appears
#f green. Red, yellow, violet and blue areas denote temperature variation in the hottest 25
of the city. Red represents the hottest 1%, yellow-5%, v iolet-10% and blue




Theme 2: Role of rural soil-moisture
in UHI formation (Imamura 1992)

Thermal inertia (or emitance): (TT) = (p ¢ k)”

High-TI = slow nite-cooling & day-warming =
nighttime UHI

Vice versa for low-TI materials
Wet rural-soil TI > urban TI > dry rural-soil TI

This cities surrounded by wet rural-soils have max
nighttime UHIs

Vice versa for cities surrounded by dry rural-soils
See next 2 slides



NASA SEC RAD-T (C) OBS: DAY & NIGHT

DAY:

« HOT RED = DRY SOIL

« COOL BLUE = WET SOIL

« URBAN AREAS:: IN BETWEEN 1
(WITH WARM ROOFS)

« UHI 7: DEPENDS, WHERE RURALI
OBS TAKEN

NIGHT:

« HOT RED = URBAN ROADS

* WARM YELLOW = WET SOIL
« COOL BLUE =DRY SOIL

« UHI: YES




2-m UHI'AS FUNCTION OF POPULATION (Imamura 1992)
> Night: only one-line
> Day: large for wet rural--soils & small for dry rural-soils
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Urban effects on wind-speed
(next 3 slides)

FAST SYNOPTIC-SPEEDS -

SMALL UHI -

URBAN z,-DECELERATES

SLOW SYNOPTIC-SPEEDS

LARGE UHI - ACCELERATION
CRITICAL-V ~3-4m/s (NY & London)
MASS-BALANCE REQUIRES:
REVERSE-EFFECT ALOFT



NYC STREAM LINE FIELD
Note: 5 obs-points along stream- line thru Manhattan




NYC Average
10-m V

U(MPH)

Nighttime UHI-acceler-
ated max-speed: always
on downwind urban-edge
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DISTANCE FROM CENTRAL PARK (miles)

1oUP CP 10 DOWN 20 DOWN
DISTANCE FROM CENTRAL PARK ( MILES)

» See above figure UHI accel is

* Fast speed (D/N): urban decel

 Slow speed (D/N): urban accel
No-return to upwind-speed during
day b/c of opposing sea-breeze ! !

inversely\prop
to rural-speed

IOUP CP 10 DOWN 20 DOWN
DISTANCE FROM CENTRAL PARK (MILES)
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URBAN-EFFECTS ON WIND-DIR

FAST SYNOPTIC-V >WEAK UHI -
URBAN BUILDING-BARRIER EFFECT -
FLOW DIVERGES AROUND CITY

SLOW SYNOPTIC-V - LARGE UHI - LOW
PRESSURE - CONVERGENCE INTO CITY

MODERATE SYNOPTIC-V - CONVERGENCE
ZONE ADVECTED TO DOWNWIND URBAN=EDGE

LARGE URBAN Z, > LOWER V =
SMALLER CORIOLIS = FLOW TURNS TO RIGHT
(secondary effect)



NOCTURNAL-UHI INDUCED SFC-CONFLUENCE WITH:
a. otherwise-calm (conf-center over urban center): Frankfurt (left)

b. low-speed regional-flow from N(con-center advected to downwind
urban-edge): NYC (right)

74°00" 45
1

AUGUST 7,1964
0600 E.S.T - 40°15’

1 1 1
30 is' 73°00'

Fig. 20 Streamline (solid lines) and isotach (dashed lines) analyses (mph) showing
nocturnal urban-induced confluence region downwind of urban center (Manhattan Island,
shown) (from Davidson, 1967).




NYC inversion pattern several hrs after previous x-section:
Note: flow hit urban upwind-edge = roughness-deceleration =
up-motion = inversion raised
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NYC daytime sfc div-field: like flow around rock

Note: (a) divergence-area over city-core 2 w < 0
(b) conv-areas on lateral urban-edges: where
diverted flow merges with undisturbed flow =2 w > 0

(c) lack of downwind obs (over.ocean)
--— _-.-_HI
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e D = oU/ox +
oViloy



NYC TETROON-DERIVED w-VELOCITIES
Note (a) larger during unstable daytime-hours
(b) Smaller during more stable nighttime-hours
(c) thin, weak nocturnal urban elev-inversion layer-base stops w

a1 (0B18) 42 (11486)
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NYC Urban effects on
moving Wx fronts

For (synoptic & sea breeze) fronts
Urban effects

— building-barrier effect (& not just z)
retards frontal movement

— UHI accelerates frontal-movement

See next 3 slides



Weak cold-frontal (N to S) passage over NYC
a. Hourly positions (left)
b. At 0800 EST (right): T, q, & SO, z-profile-changes
showed lowest 250 m of atm not-replaced, as front
“jumped” over city (Theme 3)
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URBAN TURBULENCE DURING A
NYC SEA-BREEZE FRONTAL-PASSAGE:
*VALUES HIGH ALONG-FRONT (LEFT)
*AIR STABLE BEHIND-FRONT (RIGHT)

V2N,




URBAN-EFFECTS ON MOISTURE

URBAN VAPOR-PRESSURE, e
— | DUE TO | DAYTIME EVAPORATION

— 7T DUE TO ANTHRO-MOSITURE FROM
e COMBUSTION (WINTER & NIGHTTIME)
e | NOCTURNAL DEW-FORMATION

URBAN RH | (AS UHI > fe)

URBAN FOG 1 (EVEN WITH 1 ¢.) DUE TO
* HYGROSCOPIC-NUCLEI



URBAN-EFFECTS ON PRECIP

OTHERWISE-CALM CONDITIONS -
STRONG UHI - CONVERGENCE -
PRECIP-MAX OVER URBAN-CENTER

MOVING REGIONAL STORMS -

— UPWIND DIVERGENCE -
PRECIP MIN OVER CITY AND

— LATERAL/DOWNWIND CONVERGENCE -
LATERAL AND DOWNWIND PRECIP-MAX

WEAK REGIONAL WINDS -

UHI, CONVERGENCE, AND MAX-PRECIP
ADVECTED TO DOWNWIND URBAN-EDGE




NYC URBAN EFFECTS ON p, (g/cm?):
Night (max-sfc urban): UHI, g-island, & RH-deficit
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URBAN IMPACTS ON PRECIP

AEROSOL MICROPHYSICS
— SLOW - SECONDARY DOWNWIND-ROLE?
— METROMEX & D. ROSENFELD

THERMODYNAMICS

— LIFTING FROM
e UHI CONVERGENCE
e THERMAL & MECHANICAL CONVECTION

— DIVERGENCE FROM
e BUILDING-BARRIER EFFECT



Theme 4: SYNTHESIS

OTHERWISE-CALM CONDITIONS -
STRONG UHI - CONVERGENCE -
PRECIP-MAX OVER URBAN-CENTER

MOVING REGIONAL-STORMS -

— UPWIND DIVERGENCE -
PRECIP-MIN OVER CITY AND

— LATERAL/DOWNWIND CONVERGENCE -
LATERAL AND DOWNWIND PRECIP-MAX

WEAK REGIONAL-WINDS -

UHI, CONVERGENCE, & MAX-PRECIP:
ALL ADVECTED TO DOWNWIND URBAN-EDGE




Annual-average Shanghai urban-impacts
» On: e, RH, & precip
» Problem: averages are small-A b/t 2 large conflicting-impact
» See next slide
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igure 16. The mean annual relative humidity

in Shanghai districts in the period

Figure 15. The mean annual humidity (vapowr
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2-summer-daytime-average thunderstorm-precip radar-echos
(0’s from uniform-distribution) for all, convective, & moving cases
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Dispersion effects

Vertical diffusion: limited by urban-induced
elevated-inversions (next slide)
Urban-park low-concentrations (1 slide)

Transport: 3-D effects of urban-induced flow=
modifications (one slide)

Convergence-zone high-concentrations: due to
— Urban area (1 slide)

— Sea breeze flows (1 slide)



> Urban-induced nocturnal elevated inversion-I traps all area-source Q
> Power-plant plume 1s trapped b/t urban-induced inversions-I & -II
> Inversion-III is regional-inversion
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Source-free Central-Park prevents higher-y build-up

JAN. 30,1966 x 1115-1242 (312°-13mph)
A 1339,0434 (315°-16 mph)
©1436-1539 (315°-16mph)

Theoretical:u=12.5 mph
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Figure Theoretical computed concentration curves versus

observed data along a 79th Street crosstown traverse, in;the
direction of the mean flow,




Tetroons 1n sea-breeze flows produce
interesting (X, y) and (x, z) trajectories
that returns balloon (left) and raises 1t (right)




SEA-BREEZE (SB)
EFFECTS ON y
* AM: synoptic flow
pushes it offshore -
 PM> sea breeze flow pushes
it onshore & concentrates it
w/In narrow conv-zone




Urban-distorted syn-front (left) results
in A SO, (pphm, right) :
(a)] outside of city, when front passes
(b)tover-city, as air not-replaced (front never passes)
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Required Research

Urban field studies: METROMEX, NYU/NYC,
URBAN 2000, JOINT URBAN, BUBBLE, UAO04

Wind-tunnel, fluid, LES, CFD, & DNS models—>
improved urban-canyon parameterizations
Non-M-O analytical SBL-parameterizations

GIS urban-inputs
Links b/t CFD/LES & meso-models
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Any questions?



