

March 19, 2009

1

Delft University of Technology

Radiation balance of the atmosphere

How to tackle this problem?

Observations to understand the processes Improve the atmosphere models Observations to monitor long term trends

TUDelft

Case 1 Observation of water clouds

March 19, 2009

TUDelft

6

Assume a cloud model,

Cloud base

7

$$LWC(z) = \rho_a A_{ad} (1-D)z \qquad LWP = \frac{1}{2} \rho_a A_{ad} (1-D)H^2$$

TUDelft

estimate expected observations,

make the observations,

..estimate cloud microphysical parameters

Droplet concentration

Profile effective radius

March 19, 2009

7.5

6.5

...and the radiative properties

Extinction

Optical thickness

March 19, 2009

Problem solved?

- Limited representativeness (only water clouds)
- One dimensional solution, while the problem is three-dimensional
- Integrated observations of the context to unravel all concurrent processes
- Cloud lifetime due to aerosol changes: drizzle formation

International context

March 19, 2009

Challenges

- Increase representativeness of 'one-site' observations
- Use satellite observations to retrieve vertical cloud properties anywhere

Retrieval procedure

Optical thickness and effective radius

March 19, 2009

Retrieved concentration compared to CCN at Cape grim

March 19, 2009

Retrieved cloud thickness and albedo

Correlation studies

It can also be done with Meteosat SG!

- SEVIRI imager onboard Meteosat-8
- Geostationary satellite: 0° N, 3.4° W at 35600 K
- 12 Spectral bands:
 - 4 visible and near infra-red (0.6 3.9
 - 8 thermal infra-red $(3.9 12 \mu m)$
- Time resolution: every 15 minutes
- Spatial resolution sub-satellite: 3x3 Km at CESAR: 3x6 Km
- Pixel shape: diamond, sampled: square
- Products: Optical Thickness, Effective Radius, Liquid Water
 Path, Geometrical Thickness, Channels: 1, 4, 9

March 19, 2009

Main differences Modis – Meteosat SG

Geostationary Higher time resolution Lower space resolution

1) In Europe ground-truthing possible2) Anchor stations for synergy

Ground-truthing the cloud thickness

March 19, 2009

A passive sensor can give the cloud thickness at the radar footprint

Scattering by random media: Radar and stratocumulus

March 19, 2009

Standard theory vs observations

Hypothesis: a cloud is a quasicontinuous medium at radar

 \uparrow ~ inner scale of turbulence

Not the individual drops scatter rada waves, but clusters of them -

many droplets per wavelength

wavelengths

00

000

0,8

' 0₀8

 \circ

· 080

with spatial scales of the order of, or smaller than the radar wavelength

 \circ

~~

Preliminary results of model

Challenges

- New theory of radar scattering by realistic quasi-continuous media
- and the development of a corresponding method to observe small-scale atmospheric dynamics and cloud microphysics

- Satellite ground synergy (TU Delft, ETH Zurich)
- Testing radar scattering theory (U Cologne, U Helsinki, TU Delft)

- Discussion STSM's
- Identification of tasks for cooperation (studies, ideas for campaigns (with WG3))

