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Definition of mixing layer depth

Layer in which heat, momentum, gaseous Free Atmosphere

constituents and aerosols are transported e Caping Inversion -
’ ntrainment fone . ! I

from and to the Earth’s surface il

Entrainmment

COMNE

“The mixing depth defines the top of the
layer near the surface where turbulent
mixing is occurring.” (White et al. 2009)
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Determination of mixing layer depth

From profiles of temperature, humidity, wind and
turbulence parameters:

Parcel method (Holzworth 1972): height of intersection of the
actual potential temperature profile with the dry-adiabatic
ascent starting at near-surface temperature.

Height where turbulent kinetic energy (TKE) first drops below
some fraction of its value at the surface or below some
arbitrary lower limit based on experience.

Height where the bulk Richardson number for the model
outputs surpasses a critical value beyond which the
atmosphere is considered decoupled (0.25 Seibert et al.,
2000)

From active remote sensing:

‘Radar and Sodar: scattered by temperature inhomogeneities
Cn2 (max at top of ML)

‘Lidar: scattered by aerosols (strong gradient at top of ML)
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Mixing layer depth detection methods
using lidar remote sensing

State of the Art

1D methods (well described in literature)

* Vertical gradient method (1st, 2nd derivative)
* Temporal variance method

* Wavelet based covariance method

* Idealized profile method

2D methods (not described in literature)

* Sobel/Canny gradient method (~ 1st derivative)

* LoG « Laplacian of Gaussian » method (~ 2nd derivative)
* Wavelet based method

* Phase congruency method



1D methods

ABL detection * Vertical gradient method

* Temporal variance method

2D methods
* Sobel/Canny gradient method (~ 1st derivative)
* LoG « Laplacian of Gaussian » methode (~ 2nd derivative)

* Wavelet based covariance method * Wavelet
* Phase congruency method

State of the Art * Idealized profile method

based method

1D methods - Vertical gradient method (1st, 2nd derivative)
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ABL detection

State of the Art

1D methods

* Vertical gradient method
* Temporal variance method

* Wavelet based covariance method
* Idealized profile method

2D methods

* Sobel/Canny gradient method (~ 1st derivative)
* LoG « Laplacian of Gaussian » methode (~ 2nd derivative)

* Wavelet based method
* Phase congruency method

1D methods - Temporal variance method
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. 1D methods
ABL detection * Vertical gradient method

* Temporal variance method

* Wavelet based covariance method

State of the Art * Idealized profile method

2D methods

* Sobel/Canny gradient method (~ 1st derivative)

* LoG « Laplacian of Gaussian » methode (~ 2nd derivative)
* Wavelet based method

* Phase congruency method

1D methods — Wavelet based covariance method
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“MLH can be derived in about
55% of the cases of which
25% is of a good quality”




ABL detection

State of the Art

1D methods

* Vertical gradient method
* Temporal variance method

* Wavelet based covariance method
* Idealized profile method

2D methods

* SobellCanny gradient method (~ 1st derivative)

* LoG « Laplacian of Gaussian » methode (~ 2nd derivative)

* Wavelet based method
* Phase congruency method

2D methods — Sobel/Canny gradient method (~ 1st derivative)
References:

Canny, 1986
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ABL detection

State of the Art

1D methods

* Vertical gradient method

* Temporal variance method

* Wavelet based covariance method
* Idealized profile method

2D methods

* SobellCanny gradient method (~ 1st derivative)

* LoG « Laplacian of Gaussian » methode (~ 2nd derivative)

* Wavelet based method
* Phase congruency method

2D methods — Sobel/Canny gradient method (~ 1st derivative)
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Edgel/contour/BL detection
Thresholding
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2D analysis of Lidar and Ceilometer data

Leosphere ALS450 data

Complex situation including clouds and

aerosols
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Next steps :

Vaisala (modified) CT25K

Preliminary analysis using 2-D method
are satisfactory
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Combine with STRAT layer detection (Morille et al. 2007)
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European Meteorological Ceilometer Networks

® 0-500mEE
@ 500 - 1500 m (30)
© 1500 - 3000 m (3)
©3000 - 5000 m (0)

Ceilometer networks in all (?) European
countries .

g o

Most systems only provide CBH and VIS -__
(vertical backscatter profile is missing)

SO o

WMO TECO 2008 conference, two iy
studies on BLH retrieval from existing
ceilometer networks: " =

* Wauben et al. (KNMI)
* Engelbart et al. (DWD)

Manufacturer Model | Type Remarks

elasson engineering

AB CBMES0
Vaisala/lmpulsphysic  \WWHX05 Out of production X X
Vaisala CT25K Out of production X X X X X X

Vaisala CT12K Out of production X X
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Summary:
* Mixing layer depth is key parameter
* Extensive literature on MLD retrieval

* Lidar and ceilometer backscatter from
aerosol are suited to trace MLD

* 3-D nature of Lidar signal --> image
processing

* New lidar/ceilometer network in Europe
provide monitoring of the backscatter profile

* Good opportunity for STSM to implement
new 2-D image processing technigue on a
ceilometer network

EG-CLIMET Short Term Scientific Mission

Retrieval of mixing layer thickness from existing ceilometer/lidar networks in Europe
Proposed by M. Haeffelin, Institut Pierre Simon Laplace
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The atmosphere boundary layer is characterized by turbulent fluctuations. The
determination of its thickness is crucial in meteorology to study energy and water
fluxes exchanges between the surface and the atmosphere. It is determined either
(1) using temperature, humidity and wind profiles from in-situ vertical profiles or (2)
by tracing gradients in atmospheric constituents or structures using remotely sensed
vertical profiles (lidar, radar, sodar).

Lidars or ceilometers provide vertical profiles of backscatter from aerosol particles.
Aerosols are predominantly concentrated in the mixing layer, and hence lidar signals
can be used to trace the thickness of the mixing layer. We reviewed more than 20
papers describing methods to retrieve mixing layer thickness and application to
ceilometer networks.

As Lidar/ceilometer data are 3-dimensional in nature (vertical, temporal and
intensity), we reviewed 2-D image processing methods. We show that these methods
have a great potential for retrieving mixing layer thickness from lidar/ceilometer
signals — using both temporal and vertical gradients.

We propose a short term scientific mission (STSM) to test and implement a
Sobel/Canny 2-D image processing method on a ceilometer network in Europe. As
studies have been conducted recently by KNMI (Wauben et al., 2008) and DWD
(Engelbart et al., 2008) on applying 1-D methods on ceilometer networks to retrieve
mixing layer thicknesses, we propose to conduct a STMS through a collaboration
between IPSL and either KNMI or DWD during summer 2009.

Participants:

IPSL: M. Haeffelin, Y. Morille

KNMI: H. Klein Baltink, ...

DWD: D. Engelbart, ...

Duration: 2-3 months (summer 2009)
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