A land surface analysis scheme based on an Extended Kalman Filter within SURFEX

Jean-François MAHFOUF

Météo-France/CNRM

March 16, 2009

Jean-François MAHFOUF (Météo-France/CNA land surface analysis scheme based on an

Scientific objectives (1)

- Improve the analysis of soil prognostic variables (temperature and soil moisture content) in NWP models (ALADIN, AROME, ARPEGE)
- Current status in ALADIN consortium : either interpolation from ARPEGE soil analysis or dedicated soil analysis based on optimal interpolation (CANARI) using screen-level temperature and relative humidity (Mahfouf, 1991; Giard and Bazile, 2000)

Scientific objectives (2)

- Main weaknesses of the current soil analysis: difficult to assimilate new observation types and to initialize additional prognostic variables
 - Satellite data informative about soil moisture state (AMSR-E, ERS, ASCAT, SMOS)
 - Precipitation analyses (raingauges, radars) and surface downward radiation fluxes derived from satellite measurements (LandSAF)
 - New versions of the land surface scheme ISBA (additional soil layers, inclusion of photosynthesis and plant growth)
- Proposal : Extended Kalman Filter (EKF) (*Simplified 2D-Var of Balsamo et al. (2004)*) in the offline version of SURFEX with a 6-hour assimilation window.

Definitions

- Control vector x (dimension N_x) : prognostic variables of the land surface scheme ISBA x = (w_g, w₂, T_s, T₂) [N_x = 4]
- Forward model \mathcal{M} : land surface scheme ISBA (OFFLINE) : $\mathbf{x}^t = \mathcal{M}(\mathbf{x}^0)$
- Observations y_o (dimension N_y) : T_{2m}, RH_{2m}, w_g with a covariance matrix of observation errors R
- Observation operator \mathcal{H} : Model counterpart of observations : $\mathbf{y}^t = \mathcal{H}(\mathbf{x}^t)$ (e.g. vertical interpolation scheme in the SBL)
- Background state : short-range (6-h) forecast of x (x_f^t) with a covariance matrix of background errors B

 $\frac{Remark}{r}: In the SURFEX-EKF the observation operator <math>\mathcal{H}$ also includes the forward model propagation : $\mathbf{y}^t = \mathcal{H}(\mathbf{x}^0)$

A (B) < (B) < (B) < (B) </p>

EKF equations (1)

An analysis state $\mathbf{x_a}^t$ is given by an optimal combination (minimum variance) of the observations and the background (short-range forecast) :

$$\mathbf{x}_{\mathbf{a}}^{t} = \mathbf{x}_{\mathbf{f}}^{t} + \mathbf{B}\mathbf{H}^{T}(\mathbf{H}\mathbf{B}\mathbf{H}^{T} + \mathbf{R})^{-1}(\mathbf{y}_{o}^{t} - \mathcal{H}(\mathbf{x}_{\mathbf{f}}^{t}))$$
(1)

whre **H** is the Jacobian matrix $(N_y \times N_x)$ of the observation operator \mathcal{H} :

$$\mathbf{H}_{ij} = \frac{\partial \mathbf{y}_i}{\partial \mathbf{x}_j} \tag{2}$$

<u>Remark:</u> in SURFEX, we use a finite difference approach where the input vector \mathbf{x} is perturbed N_x times to get for each OFFLINE integration a column of the matrix \mathbf{H} :

$$\mathbf{H}_{ij} \simeq \frac{\mathbf{y}_i(\mathbf{x} + \delta x_j) - \mathbf{y}_i(\mathbf{x})}{\delta x_j}$$
(3)

where δx_j is a small increment value added to the *j*-th component of the **x** vector (defined in OPTIONS.nam).

EKF equations (2)

The analysis state in characterized by an analysis error covariance matrix:

$$\mathbf{A} = (\mathbf{I} - \mathbf{K}\mathbf{H})\mathbf{B} \tag{4}$$

where K is the Kalman gain matrix

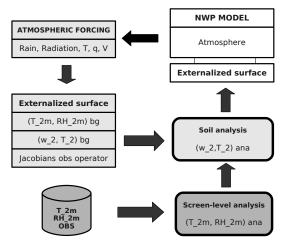
The analysis is cycled by propagating the time the two quantities x_a et A up to next time where observations are available :

$$\mathbf{x_f}^{t+1} = \mathcal{M}(\mathbf{x_a}^t) \tag{5}$$

$$\mathbf{B}^{t+1} = \mathbf{M}\mathbf{A}^{t}\mathbf{M}^{T} + \mathbf{Q}$$
 (6)

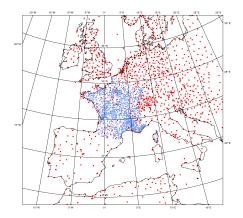
Jacobian matrix **M** of the forward model M, between time t and time t = 0 (obtained like **H**):

$$\mathbf{M}_{ij} = \frac{\partial x_i^{\mathsf{r}}}{\partial x_j^0} \tag{7}$$


March 16, 2009

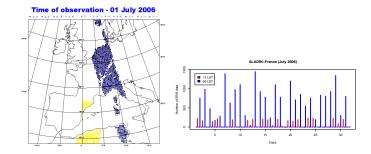
6 / 20

A new matrix \mathbf{Q} , representing the model error covariance matrix, needs to be defined.

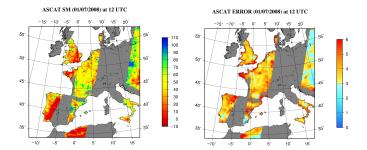

Jean-François MAHFOUF (Météo-France/CNA land surface analysis scheme based on an l

Coupling between surface and atmospheric analyses

A D A D A D A

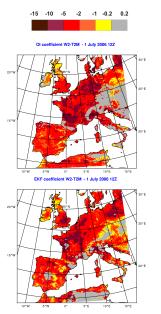

Surface network over ALADIN-France domain

blue = RADOME (1000) - red = SYNOP (1000)

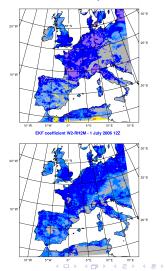

Jean-François MAHFOUF (Météo-France/CNA land surface analysis scheme based on an l

ERS superficial soil moisture (1993-present)

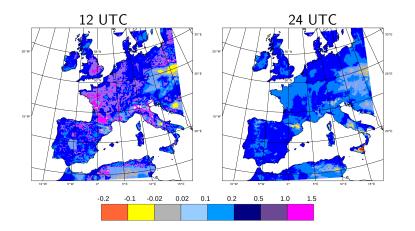
Requirements : projection on model grid - error specification - bias correction


ASCAT superficial soil moisture (2007-present)

Jean-François MAHFOUF (Météo-France/CNA land surface analysis scheme based on an l

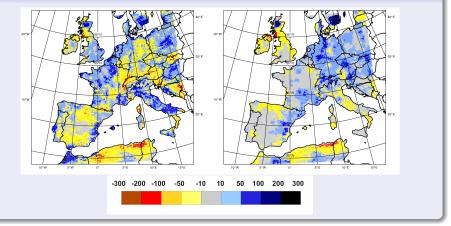

March 16, 2009 10 / 20

EKF gain matrix vs. OI coefficients



OI coefficient W2-RH2M - 1 July 2006 12Z

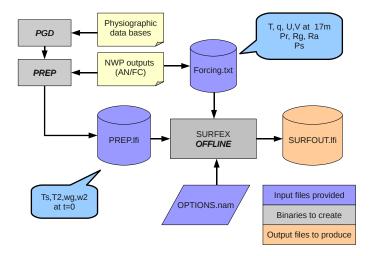
Jean-François MAHFOUF (Météo-France/CNA land surface analysis scheme based on an l


Jacobian $\partial w_g / \partial w_2$

Jean-François MAHFOUF (Météo-France/CNA land surface analysis scheme based on an l

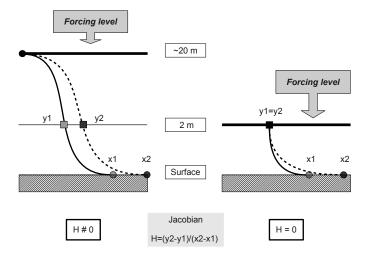
Root-zone soil moisture increments (mm) July 2006

Pratical aspects (1)


- Creation of executable files to run SURFEX (OFFLINE) and the EKF (VARASSIM)
- The binary OFFLINE is created automatically when installing SURFEX.
- The binary VARASSIM is generated from the FORTRAN files contained in the sub-directory VARASSIM of the directory \$SURFEX_EXPORT/src.
- The subdirectory MYSRC contains the subroutines that you have modified with respect to the standard versions.
- The file Makefile.SURFEX.mk need to be changed in order to add the creation of VARASSIM

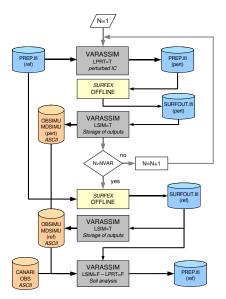
Practical aspects (2)

The directory VARASSIM contains the following files :


- varassim.f90 : main program that performs the various steps of the assimilation : definition of initial perturbed states, reading of fields from SURFEX outputs, writing of fields necessary for the analysis, and finally the surface analysis.
- choldc.f90 : Cholesky decomposition (part I)
- cholsl.f90 : Cholesky decomposition (part II)
- inverse_matrix.f90 : explicit computation of an inverse matrix after Cholesky decomposition.
- trans_chaine.f90 : Transformation of an integer into a character .
- get_file_name.f90 : gets the name of files for the current assimilation window.

Flowshart of SURFEX offline

(日) (同) (日) (日) (日)


Jacobians in the SBL

→

3

Flowshart of the main script run_ekf.sh

э

(日) (同) (日) (日) (日)

Namelist OPTIONS.nam

Namelist block	Variable	Type	Description
NAM_IO_VARASSIM	LPRT*	F	to perform analysis
	LSIN*	F	to define δx_i and store $\mathbf{x} + \delta x_i$ at t=0 to perform analysis
	Potu.	Ť	to perform analysis to write the simulated observations $H(\mathbf{x})$
		-	and the evolved state vector x
	LBEV*	F	to perform analysis
		Т	to evolve of the B matrix
	LBFIXED	F	to evolve of the B matrix
		т	to keep the ${f B}$ matrix constant with time
NAM.OBS	NOBSTYPE	integer	Number of possible observation types
			This value must be consistent with the obs file
	YERROBS(1)	real	Observation error for T_{2m} in K
	YERROBS(2)	real	Observation error for RH_{2m} (no units)
	YERROBS(3) INCO(1)	real	Observation error for w_g (fraction of SWI) 1 if observation type included
	1800(1)	integer	0 if observation type included
			o it observation type excluded
NAM VAR	IVAR*	1	Control variable of interest
	NVAB*	1	Number of control variables
			(dimension of control vector)
	XVAR_M(i)	character	Control variable identifier in PREP file
	PREFIX.M(i)	character	Control variable prefix in PREP.txt file
	XSIGMA.M(1)	real	(Initial) BG error for w_2 (fraction of SWI)
	XSIGMA.M(2)	real	(Initial) BG error for w_g (fraction of SWI)
	XSIGMA_M(3)	real	(Initial) BG error for T_{π} (K)
	XSIGMA.M(4) TPRT M(1)	real	(Initial) BG error for T_2 (K) Size of metaphotics of m_1 for finite Lambiane
	IPRI_M(1)	real	Size of perturbation of w_2 for finite Jacobians The perturbation δx writes $x \times TPRT_M$
	TPRT_M(2)	real	Size of perturbation of w_{α} for finite Jacobians
	TPRT_M(3)	real	Size of perturbation of T_s for finite Jacobians
	TPRT_M(4)	real	Size of perturbation of T_2 for finite Jacobians
	INCV(i)	integer	1 if element of control vector included
			0 if element of control vector excluded
	SCALE_Q	real	Definition of the matrix Q of model errors as
			fraction of the initial diagonal B matrix

Table 1: Description of each variable in the namelist QPTIONS.man for the blocks relative to the Land Data Assimilation System. The dements with stars (*) should be kept at their value in bold - their actual values are defined by the script run, skt. ab

Jean-François MAHFOUF (Météo-France/CNA land surface analysis scheme based on an

3

イロト イポト イヨト イヨト

Directory structure

A number of directories should be created and/provided :

- repforcing : Directory where the forcing data are stored (9pt sample provided in ASCII for July 2008)
- represults : Directory where the results will be stored
- reprun : Directory where the script run_ekf.sh is executed
- repobs : Directory where the observations are stored (9pt sample provided in ASCII for July 2008 with SYNOP and ASCAT data)
- repnamel : Directory where the namelist is located (namelist OPTIONS.nam provided)
- repanalyse : Directory where the initial conditions are stored (PREP_9pts.lfi provided for a set of 9 points within the ALADIN-France domain on 02 July 2008 at 00Z)
- repbin : Directory where the binary files to execute SURFEX and the EKF are located

3

通 ト イヨ ト イヨト