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An Adaptive Unscented Kalman Filter
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An adaptive filtering

●Kalman filter is optimal only in the case of linear Gaussian 
systems 
●Stable linear Gaussian system converge to a steady state 
solution   
●At steady state solution innovation variance (B

yy,t
 + R) is 

constant provided that the observation error variance R is 
constant

One way to optimize behavior of the system is to force the 
innovation variance vary less

v
t 
= B

yy,t 
= (H(B*f

t
)+Q

t
)HT + R



Meteorologisk institutt met.no

In the adaptive unscented Kalman filter scheme, all diagonal entries of 
Q

t
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corrected each assimilation step to minimize
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Result : innovation is too large in comparison to the spread of the 
ensemble; the model does not predict the observation well; model 
is wrong; increase model error and come closer to the next 
observation;
              innovation is small in comparison to the model spread; the 
model predict the observation well; model is right; reduce model 
error and filter away observational noise stronger. 


