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Why validation and diagnostics?

e Are there technical problems in the model runs -
e.g. Did we forget to use the sounding data?
e.g. Are there bugs and inconsistencies in the programs?

e Do our model results correspond reality?

e Does our model obey the laws of physics?
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Tasks
e Monitoring and meteorological control of the model

e Studying and solving the known problems:
e.g. Are the 10-metre winds of HIRLAM too weak?

e Testing the new model components

Needed
e Systematically looking around to find problems
e Lxperience in analysis and interpretation

e Tools to find problems and formulate hypotheses
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Possibilities of validation

e Synoptic control

e Station verification

e Sensitivity studies

e Comparison with special observations
e Synoptic case studies

e Parallel runs

e Budget studies
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VERIFICATION AGAINST STATION DATA AND
ANALYSES

Variables verified

e Surface parameters: ps, 1o, RHapm, U, precipitation, (cloudiness),

against -observations

e Upper level parameters: ®,7T, RH, v,

against -observations
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/Common verification parameters

Mean error

N
1
ME = E_"-’Eif (Fp—Ox)

Root-mean-square error
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RMSE = Jﬁ): (Fy—- 0y 2
1

Standard deviation
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SD = JRMSE® - ME°
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@andard verification: pg \
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\Figure 2: 36 month MSLP time series of +24h FMI HIRLAM forecasty
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@andard verification: T5,, \

\Figure 3: 36 month Tb,, time series of +24h FMI HIRLAM forecasts/
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Problem:

/Q\‘ NEAR-SURFACE TEMPERATURES IN HIRLAM
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Wind verification problems

Ten metre wind
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Figure 4: FMI HIRLAM wind verification, Sept 1998
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. Operational verification shows, that in the HIRLAM 10-metre
winds there is slight positive bias, i.e. the winds verified over

European SYNOP-stations are slightly too strong in the average.

. Synoptic experience tells, that HIRLAM 10-metre winds over

sea, in cases of strong winds, are far too weak.

. When HIRLAM 10-metre winds with a 55 km grid resolution are

given as input to wave models, too shallow waves are produced.

/
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Check (2)

— How to verify 10-metre winds? — Wind measurement problems
— How to compare winds at the level of measurement? — 10-metre

winds vs. lowest model layer winds ...
Check (3)
Put HIRLAM 10-metre/lowest model layer winds with a 22 km grid

resolution into the wave model

- /
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. Analysis of the wind verification data obtained showed, that boundary

~

layer wind direction is systematically overestimated in FMI
operational 22km resolution HIRLAM forecasts

The conclusion was confirmed checking short forecasts: the forecasts
were found to systematically add about 15° wind direction to the

analysed values

What to do:
e Ask boundary layer people

e Think about the consequences: Ekman pumping — filling of

cyclones — Ask forecasters

e See what could be found out from an enstrophy (vorticity) budget

/

study
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/Experiment verification: ps

Verification statistics over Scandinavia for surface pressure
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Figure 5: HIRLAM 4.1 with and without TOVS-data
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Verification against special observations: examples

~

e comparison of boundary layer parametrizations with tower data

e comparison surface parametrizations against surface flux

measurements over land and sea
e comparison of model cloudiness with satellite cloudiness

e verification of radiation parametrizations against flight

measurements

e comparison of model albedo with albedo derived from satellite

measurements

e comparison of heat flux in snow with measurements
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BUDGET STUDIES

where terms include
e advection and other dynamical interactions
e parametrized effects
e boundary relaxation
e analysis increment
e ctc

= Budget studies

N
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Possibilities of the budget studies

[
Compare individual components of balance equations to available
observations: fluxes at surface (SFC) and at the top of the
atmosphere (TOA)

o .
Calculate budget equations within the model, i.e. study how the

physical conservation laws are fullfilled during model runs

- /
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DYNAMICAL AND PHYSICAL TENDENCIES

N /ps dp
€T —= €r—
0 9

02 (9T} + (22
Ot o Ot dyn ot phys

P Oxdp O dp, Oz By

0 ot ; - a —Ls Ot - (a)dyn + (E)phys

02 o

E - + (E)phys
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For a simple budget equation:

S ,_’,UWd
—J (V- xv—l—a )y T Ts

B v

—V - xv

T W + TsUs * Vps + 1575
—V - 2 — E

Ops

aps

(6)

HIRLAM model can give us the total tendency 3 ‘9“3 and the tendency

oz

due to physics 7 phys

N
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BASIC EQUATIONS

0
({%:A(u)—l—Px—l—f‘U-l-Jx (7)
Ov
o = AW + Py = futJ, (®)
oT 1
8_ — A(T) + Oé_w + _[Qrad + Qcond + Qturb T Qdiss] (9)
t Cp Cp
dq
E = A(Q) + Weond + Wiurs (10)
0
a_g — A(C) + Ccond + Cturb (11)

The red terms are related to physical parametrizations.

- /
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/BALANCE EQUATIONS FOR HEAT AND MOISTURE\

Integrate the red terms of the basic equations (9, 10 and 11) to get the
vertically integrated physical tendencies

5? 1 —_— —_— —_— —_—
A, - [Qrad + Qcond + Qturb + Qdiss] (12)
ot phys Cp
55 —_— —_—
e — con W, ur 13
ot phys ¢t furt ( )
52 —_— —_—
. — Ccon C ur 14
8t phys ¢ Gt ( )
Combining Equations (13 and 14) we get
8 o 5\ —_— —_—
—(q + C) _ 7 — Rcond + Rturb (]‘5)

8t phys B aphys
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Heat sources

Qrad = —(Frad)Toa + (Frad)src
Q/tz;b = H
Q/d;s =D
— dc
cond ~ L(P + = + L’LP
Q d ( kR 8t phys) o
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Sources of moisture

Wiars = E

—

— Oc
Wcon = —Prp — Ps — —
¢ = S ot phys

Rturb =k
Rcond:_PR_PS

(20)

33




-

VERTICALLY INTEGRATED BUDGETS

Thus we get balance equations for the conservative variables

enthalpy S = ¢, T

—

%_fphys — (Frad)TOi_ (Frad)SFC‘l‘
L(Pr + %phys) + L; Ps+
H+D

and total moisture r

or = E— Pgp— Ps

Ot phys

N

(24)

(25)
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How to use the bugdet studies
e Elementary: Check the balance in the model
e External: Compare observed and calculated fluxes
e Internal: Study reasons of suspected imbalance
Examples
e Pictures of the balance
e Fluxes over sea

e A study of humidity balance

- /
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A study of humidity balance
Problem

Comparing forecasted and analysed integrated humidity tendencies ot

the SMHI HIRLAM reanalysis a bias was found: over large areas

99 _ 094
) Btan Bty O

model tends to dry the atmosphere

Why: too much precipitation / too little evaporation?
e map of the bias
e vertical distributions

e method of regression analysis

e o and (3

- /
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/Method \

The forecasted tendency of a variable 7¢,... can be written as

Tforec — Tdyn + Tphys — Tobs +1mb
Let us consider the moisture balance,

_ 99 __

and assume, that the imbalance between observations and forecast is

caused by physics. We can now write an estimate

™ = Tgyn+ «aF — (P and find the optimal values of the
coeflicients a and 3 by minimizing the imbalance defined by the
root-mean-square-error

rmse = tho (T* — Tops)?

where the sum is taken over a time period and 7,45 is taken from

\analyses. /
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Differentiating with respect to a and § and requesting the result to
be = 0 we get a system of equations for every grid point, where

a(x,y) and B(x,y) can be solved.
Results

® (v

o 3
e corrected bias

Thus, everywhere where evaporation is significant, the method used

tries to increase evaporation and leave precipitation unchanged.

N /
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