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Why validation and diagnostics?

Main questions

� Are there technical problems in the model runs -

e.g. Did we forget to use the sounding data?

e.g. Are there bugs and inconsistencies in the programs?

� Do our model results correspond reality?

� Does our model obey the laws of physics?
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Tasks

� Monitoring and meteorological control of the model

� Studying and solving the known problems:

e.g. Are the 10-metre winds of HIRLAM too weak?

� Testing the new model components

Needed

� Systematically looking around to �nd problems

� Experience in analysis and interpretation

� Tools to �nd problems and formulate hypotheses
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Possibilities of validation

Operational

� Synoptic control

� Station veri�cation

Experimental

� Sensitivity studies

� Comparison with special observations

� Synoptic case studies

� Parallel runs

� Budget studies
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VERIFICATION AGAINST STATION DATA AND

ANALYSES

Variables veri�ed

� Surface parameters: ps; T2m; RH2m; ~v, precipitation, (cloudiness),

against SYNOP-observations

� Upper level parameters: �; T; RH;~v,

against TEMP-observations
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Common veri�cation parameters

Mean error             

Root-mean-square error            

Standard deviation             
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Figure 1: Synoptic stations used in FMI HIRLAM analysis at 00UTC

Oct,13,1998.



Figure 2: Observation quality control example (Aug, 1998,FMI

HIRLAM)
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Standard veri�cation: ps            
Figure 2: 36 month MSLP time series of +24h FMI HIRLAM forecasts
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Standard veri�cation: T2m            
Figure 3: 36 month T2m time series of +24h FMI HIRLAM forecasts
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Problem:
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Wind veri�cation problems

Figure 4: FMI HIRLAM wind veri�cation, Sept 1998
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1. Operational veri�cation shows, that in the HIRLAM 10-metre

winds there is slight positive bias, i.e. the winds veri�ed over

European SYNOP-stations are slightly too strong in the average.

2. Synoptic experience tells, that HIRLAM 10-metre winds over

sea, in cases of strong winds, are far too weak.

3. When HIRLAM 10-metre winds with a 55 km grid resolution are

given as input to wave models, too shallow waves are produced.
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Check (2)

! How to verify 10-metre winds? ! Wind measurement problems

! How to compare winds at the level of measurement? ! 10-metre

winds vs. lowest model layer winds : : :

Check (3)

Put HIRLAM 10-metre/lowest model layer winds with a 22 km grid

resolution into the wave model
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1. Analysis of the wind veri�cation data obtained showed, that boundary

layer wind direction is systematically overestimated in FMI

operational 22km resolution HIRLAM forecasts

2. The conclusion was con�rmed checking short forecasts: the forecasts

were found to systematically add about 15o wind direction to the

analysed values

3. What to do:

� Ask boundary layer people

� Think about the consequences: Ekman pumping ! �lling of

cyclones ! Ask forecasters

� See what could be found out from an enstrophy (vorticity) budget

study
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Experiment veri�cation: ps
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Figure 6: Old and present HIRLAM radiation scheme compared in a

climate mode run
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Figure 7: Downward short-wave (a)

and long-wave (b) radiation fluxes at

Jokioinen from 12 UTC 9 July to 12 UTC 19

July, 1989.
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Veri�cation against special observations: examples

� comparison of boundary layer parametrizations with tower data

� comparison surface parametrizations against surface ux

measurements over land and sea

� comparison of model cloudiness with satellite cloudiness

� veri�cation of radiation parametrizations against ight

measurements

� comparison of model albedo with albedo derived from satellite

measurements

� comparison of heat ux in snow with measurements

� . . .
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BUDGET STUDIES

@x
@t
=
X

terms; (1)

where terms include

� advection and other dynamical interactions

� parametrized e�ects

� boundary relaxation

� analysis increment

� etc

) Budget studies

25



'
&

$
%

Possibilities of the budget studies

� External:

Compare individual components of balance equations to available

observations: uxes at surface (SFC) and at the top of the

atmosphere (TOA)

� Internal:

Calculate budget equations within the model, i.e. study how the

physical conservation laws are full�lled during model runs
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DYNAMICAL AND PHYSICAL TENDENCIES

^x =
Z ps

0

x
dp

g

(2)

@x
@t
= (
@x

@t
)dyn + (
@x

@t
)phys (3)

Z ps

0

@x
@t

dp
g

=
@^x

@t
� xs
@ps

@t
= (
c@x

@t
)dyn + (
c@x

@t
)phys (4)

@^x
@t
= xs
@ps

@t
+ (
c@x

@t
)dyn + (
c@x

@t
)phys (5)
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For a simple budget equation:

(c@x
@t
)dyn + xs
@ps

@t

= �

R ps
0

(r � x~v + @x!
@p

)dp
g

+ xs
@ps

@t

= �r � ^x~v � xs!s + xs~vs � rps + xs
@ps

@t

= �r � ^x~v � dp
dt +

dp
dt

= �r � ^x~v

(6)

HIRLAM model can give us the total tendency @^x
@t

and the tendency

due to physics c@x
@t phys

28



'
&

$
%

BASIC EQUATIONS
@u

@t
= A(u) + Px + fv + Jx (7)

@v
@t
= A(v) + Py � fu+ Jy (8)

@T
@t
= A(T ) +
�!

cp
+

1
cp
[Qrad +Qcond +Qturb +Qdiss] (9)

@q
@t
= A(q) +Wcond +Wturb (10)

@c
@t
= A(c) + Ccond + Cturb (11)

The red terms are related to physical parametrizations.

29



'
&

$
%

A(x) = ~v � rx

Px = 1
�
@p

@x

Py = 1
�
@p

@y

Jx = @�x
@z

; �x = �u
0
w
0

Jy =

@�y
@z

; �y = �v
0
w
0

Qrad = �

1
�
@Frad

@z

Qcond � L(ec � cc + ep)

Qturb = �

1
�

@cp��
0
w
0

@z

Qdiss = �~v � ~J

Wcond = ec � cc � ep

Wturb = �

1
�
@�q
0
w
0

@z

Ccond = �ec + cc � gp

Cturb = �

1
�
@�c
0
w
0

@z
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BALANCE EQUATIONS FOR HEAT AND MOISTURE

Integrate the red terms of the basic equations (9, 10 and 11) to get the

vertically integrated physical tendencies

d@T
@t phys
=

1
cp
[dQrad + dQcond + dQturb + dQdiss] (12)

c@q
@t phys
= dWcond + dWturb (13)

c@c
@t phys
= dCcond + dCturb (14)

Combining Equations (13 and 14) we get

d@(q + c)

@t phys
=
c@r

@t phys
= dRcond + dRturb (15)
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Heat sources

dQrad = �(Frad)TOA + (Frad)SFC (16)

dQturb = H (17)

dQdiss = D (18)

dQcond � L(PR +
c@c

@t phys
) + LiPS (19)
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Sources of moisture

dWturb = E (20)

dWcond = �PR � PS �
c@c

@t phys

(21)

or for the total water content r:

dRturb = E (22)

dRcond = �PR � PS (23)
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VERTICALLY INTEGRATED BUDGETS

Thus we get balance equations for the conservative variables

enthalpy S = cpT
c@S

@t phys
= (Frad)TOA � (Frad)SFC+

L(PR +c@c
@t phys
) + LiPS+

H +D

(24)

and total moisture r

c@r
@t phys
= E � PR � PS (25)
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How to use the bugdet studies

� Elementary: Check the balance in the model

� External: Compare observed and calculated uxes

� Internal: Study reasons of suspected imbalance

Examples

� Pictures of the balance

� Fluxes over sea

� A study of humidity balance
35
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A study of humidity balance

Problem

Comparing forecasted and analysed integrated humidity tendencies of

the SMHI HIRLAM reanalysis a bias was found: over large areas

model tends to dry the atmosphere, @^q
@tan

�

@^q
@tfc
> 0.

Why: too much precipitation / too little evaporation?

� map of the bias

� vertical distributions

� method of regression analysis

� � and �
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Method

The forecasted tendency of a variable �forec can be written as

�forec = �dyn + �phys = �obs + imb

Let us consider the moisture balance,

�phys =

@^q
@t
= E � P

and assume, that the imbalance between observations and forecast is

caused by physics. We can now write an estimate

�� = �dyn+ �E � �P and �nd the optimal values of the

coeÆcients � and � by minimizing the imbalance de�ned by the

root-mean-square-error

rmse =
PtN

t=to
(�� � �obs)
2

t

where the sum is taken over a time period and �obs is taken from

analyses.
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Di�erentiating with respect to � and � and requesting the result to

be � 0 we get a system of equations for every grid point, where

�(x; y) and �(x; y) can be solved.

Results

� �
� �

� corrected bias

Thus, everywhere where evaporation is signi�cant, the method used

tries to increase evaporation and leave precipitation unchanged.
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