

Royal Netherlands Meteorological Institute Ministry of Infrastructure and the Environment

Prediction of lake ice in the Netherlands using FLake

Cisco de Bruijn KNMI, The Netherlands

Contents

- Introduction/Motivation
- Models for ice prediction
- Operational ice model (Wessels)
- Flake (Freshwater Lake model)
- •Derived Ice thicknesses at Cabauw
- •Flake driven by HARMONIE
- •Flake driven by ECMWF ensembles
- •Conclusions and Outlook

Motivation

- •Interest by ice skaters for frozen waterways in the Netherlands
- •Interest by transport sector for navigable waterways
- •Need for interactive tool for ice prediction

HARMONIE: land/sea mask + inland waters

De Bruin and Wessels: One dimensional ice model (JAM 1987)

Surface energy
Radiative fluxes (Qs, Ql, absorbed solar radiation)
Turbulent fluxes (sensible and latent heat fluxes, momentum flux)

•Snow

•Thermal and Optical properties of snow

•Ice

•Thermal regimes (temperature profiles)

From Bin Cheng

Empirical formula's for longwave - and net radiation

rdlong=(0.76*0.004*ta)*ppb*(ta+273.15)**4+(2.25*nn+5.25*nh)rdnet=(1.0-albedo)*rdglob-emiss*(ppb*(tn+273.0)**4.0-rdlong)

```
ta=air temperature [C]
```

- tn=wet or ice bulb temperature [C]
- ppb= Stephan Boltzmann constant [W/m2/K4]
- nn= total cloud cover [octa]
- nh=low cloud cover [octa]
- rdglob=global radiation [W/m2]
- emiss=emissivity [0.9 or 0.95]

Flake: Lake parameterization D. Mironov et al. (Boreal Env. Res. 2010) Snow on ice: Semmler et al. (Tellus 2011)

From Bin Cheng

FLake – Freshwater Lake model: a bulk lake model for parameterization of lakes in NWP and climate modeling

Water temperature measurements during the winter of 1996-1997 at Cabauw (Heusinkveld, Bosveld)

Water temperatures

Observations

Flake temperatures T_mnw=column T_wML=mixed layer T_bot=bottom

Water temp --> pseudo ice thickness

Example:

mm

T Celsius

6		-2.24		
23		-2.13		
49		-1.24		
90		0.25		
140		0.23		
226		3.86		

pseudo ice thickness

Operational ice prediction model (Wessels) driven by observations at Cabauw, winter 1996/1997

FLake driven by observations (30 min) at Cabauw, winter 1996/1997

Cabauw, observations 10.0 5.0 0.0 0.35 C -5.0 0.30 -10.0 0.25 -15.0ice [m] 0.20 T2m -20.00.15 25/01 01/02 21/12 28/12 04/01 18/01 07/12 14/12 11/01 0.10 7.00 0.05 6.00 0.00 5.00 [mm/h] 4.00 3.00 2.001.00 snow water equiv 0.16 0.0025/01 01/02 07/12 14/12 21/12 28/12 04/01 11/01 18/01 0.14 0.12 snow [m] 0.10 7.00 0.086.00 0.06 5.00 0.04 [g/kg]4.00 0.02 3.00 0.00 2.00SpecHum 1.00 21/12 28/12 25/01 01/02 07/12 14/12 04/01 11/01 18/01

Ice and snow

FLake driven by ECMWF data every 3h +24h

short wave radiation

Martin Stam and Rudolf van Westrhenen: Collection of observed ice thickness via internet

dataset winter 2010/2012

LIsdikte meting

Ice episode winter 2012, Slotermeer, d=2 m

HARMONIE input data

FLake February 2012, Sloter meer(Fr), Depth=2.0m

HARMONIE 36H1 t+24 precipitation sum forecast VT:0 UTC on 4 February 2012

Ensembles, ECMWF

Sensitivity for initial values

Conclusions

- •Flake is useful for predicting ice and snow thicknesses, although it slightly overpredicts ice thicknesses.
- •Flake is competitive with operational ice prediction model
- •Flake's performance with snow on ice is improved
- •Flake off line is an useful tool
- •Regional predictions are possible using HARMONIE data
- •Uncertainty in icegrowth is well captured using EPS data

Plans

- •Further implementation of FLake in HARMONIE
- •Comparison of Flake and Operational ice model
- •Apply Dutch measurements of ice thickness for validation of lake ice models
- •Observations of ice thickness are still sparse, but ...

More observations are coming up Ground penetrating Radar applied for measuring ICE thickness

Grontmij, De Bilt, Dick Broekhuizen

Water frozen in two frost periods with cracks inside the ice.

