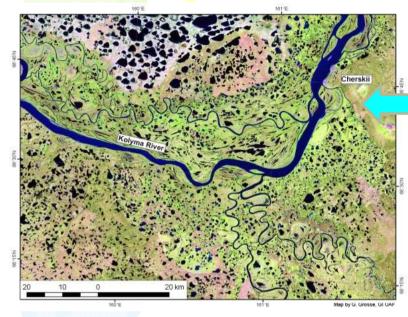
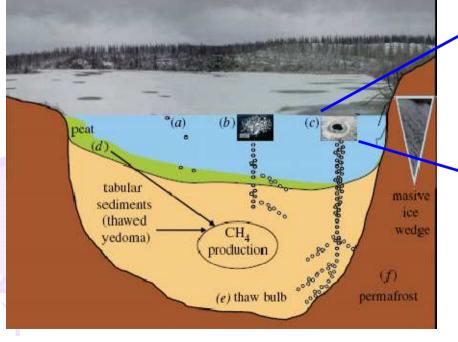

2nd Workshop on Parameterization of Lakes in Numerical Weather Prediction and Climate Modelling SMHI, Norrköping, September 15-17 2010 V.M.Stepanenko¹, E.E.Machulskaya^{1,2}, and M.V.Glagolev^{3,4}

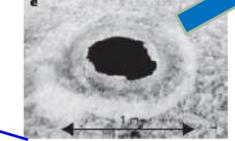
Moscow State University, Research Computing Center
 Deutscher Wetterdienst
 Moscow State University, Faculty of Soil Science
 University of Yugra, Chanty-Mansiisk

Numerical modelling of methane emissions from thermokarst lakes

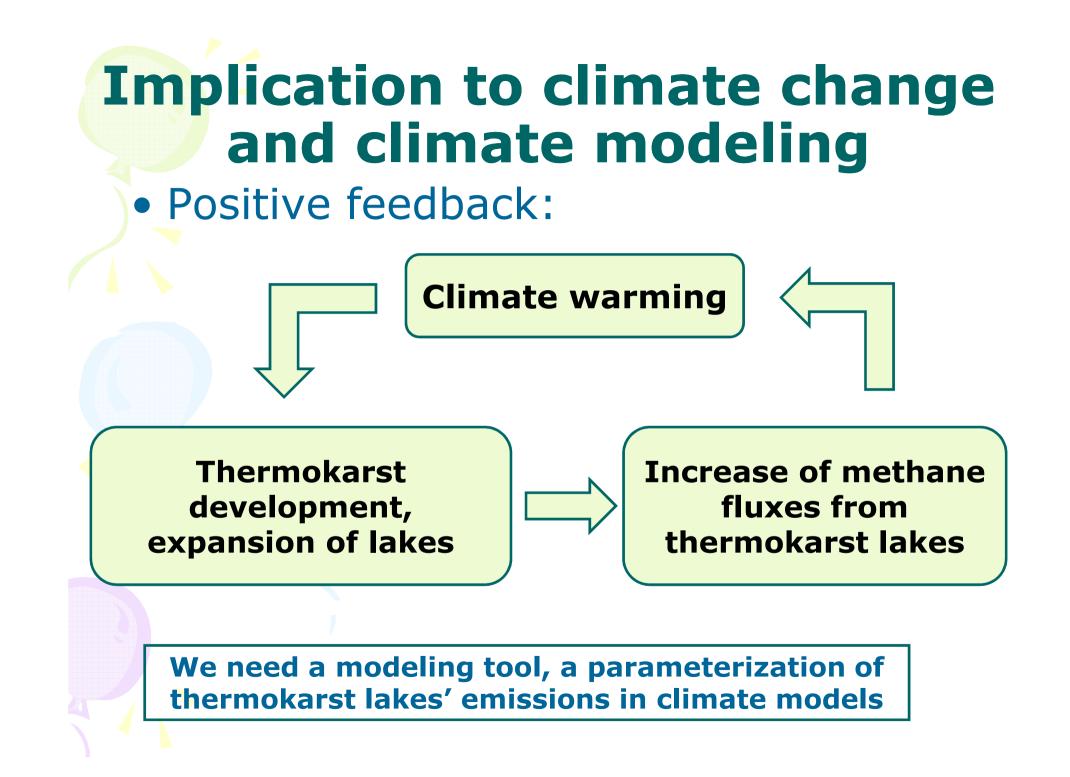

The work is supported by grants: RFBR 09-05-13562-офи_ц, 09-05-00379-а, 10-05-00981-а, П№1394

Atmospheric methane and its sources


Sources of methane in a climate system	Mtones
	CH ₄ /yr
Animals (mostly ruminants), without termites	106
Termites	23
Rice paddies	69
Natural wetlands, excluding tundra	113
Tundra	19
Oceans	14
Lakes	5
Methane hydrates	4
Volcanoes	1
Other natural sources	6
Burials of solid waste products	33
Coal industry	46
Gas industry	54
Biomass burning	40
Automobiles	1
TOTAL	~530


Emission of methane by thermokarst lakes

thermokarst lakes in Northern Siberia
occupy
22-48%
of the area
satellite images
indicate expanding
of thermokarst
lakes area



Unfreezing "hotspot" – the source of methane during wintertime

 8 - 50% of anthropogenic emissions in XXI century depending on IPCC scenario (K. Walter et al., 2006, Nature)

Methane emission: bogs and lakes

Mechanism of methane production

- On **bogs** the substrate for methane production comes from surface NPP -> <u>modeling approaches</u> <u>are well developed</u>
- In **lakes** methane is produced (i) from lake bottom NPP and (ii) from the old organics, that has been sequestered in permafrost and comes to positive temperature region while talik is deepening -> <u>the</u> <u>need for new parameterization</u>

Implication to annual cycle

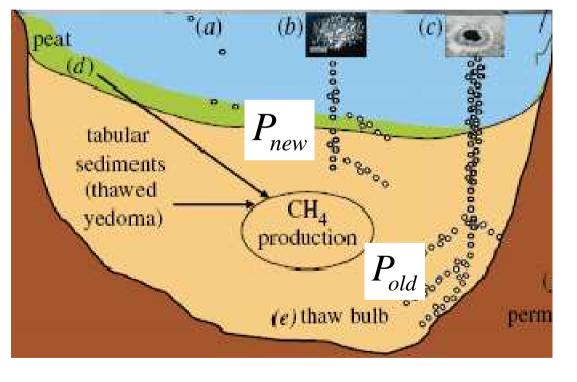
- On bogs cold season emission is very low;
- In lakes methane is produced in talik, that is under positive temperatures all year round (<u>40-50% of</u> <u>annual emission happen in cold period</u>)

Methane concentration in lake talik

$$\frac{\partial [CH_4]}{\partial t} = \frac{\partial}{\partial z} k_{CH_4,m} \frac{\partial [CH_4]}{\partial z} + P - E - \mathbf{X}$$

(B. Walter & Heimann, 1996, 2000)

Neglected: vegetation transport F


Ebullition:

 $E = k_e f_{step} \left(\Delta [CH_4] \right) \Delta [CH_4],$ $\Delta [CH_4] = [CH_4] - [CH_4]_{max}$

Production:

$$P = P_{new} + P_{old}$$

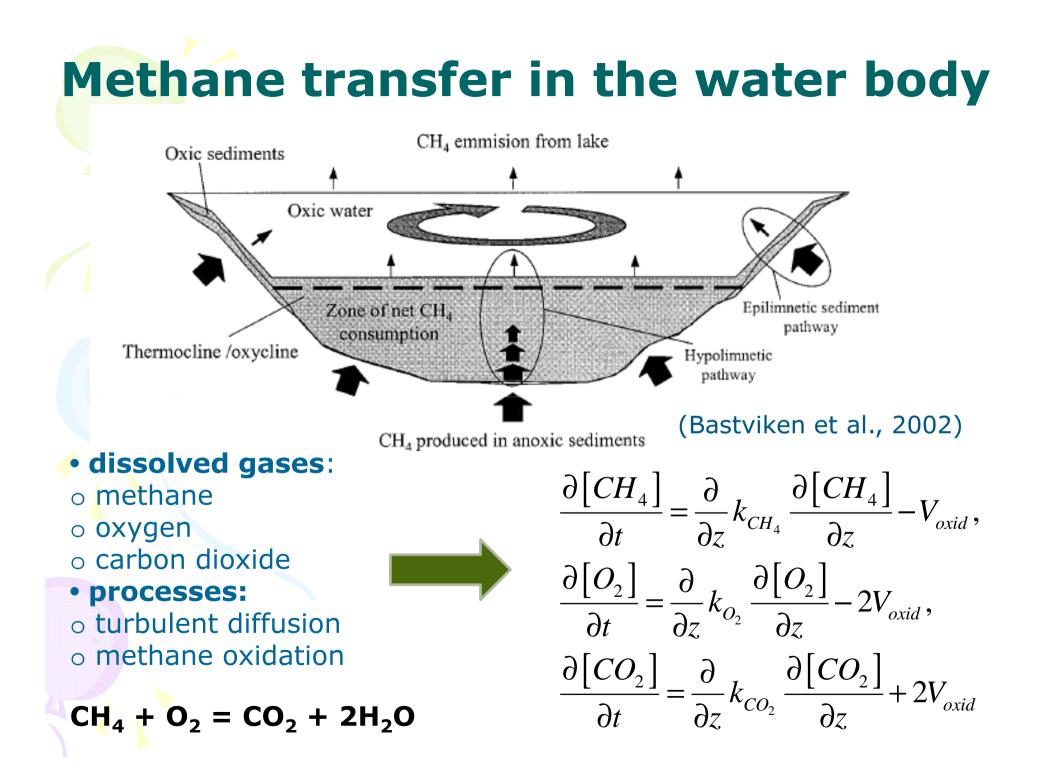
$$P_{new} = P_{new,0} \exp(-\alpha_{new}z) f_{step} (T) q_{00}^{T/10} \qquad P_{new,0} - \text{calibrated} parameter$$

Methane production from old organics decomposition

happens only under positive temperatures
is exponentially dependent on temperature
is proportional to decomposable organics content

$$P_{old} = P_{old,0}^* C_{old} f_{step} (T) q_{00}^{1/10} P_{old,0}^* \text{ calibrated parameter}$$

Michaelis-Menthen equation for decomposition (1)


$$\frac{\partial C_{old}}{\partial t} = -\frac{V_{C,\max}C_{old}}{\alpha_C + C_{old}},$$
$$C_{old} = f(t, t_0, \alpha_C, V_{C,\max})$$

Analytical law for talik deepening (2)

$$\Rightarrow z = C_t \sqrt{t_0}, h_t = C_t \sqrt{t}$$

Combining (1) and (2) yields

$$C = C_{old,0} \left(2 + \lambda_C - \sqrt{(1 + \lambda_C)^2 + 2\gamma_C C_t^{-2} (h_t^2 - z^2)} \right)$$

One-dimensional k-ε model (LAKE)

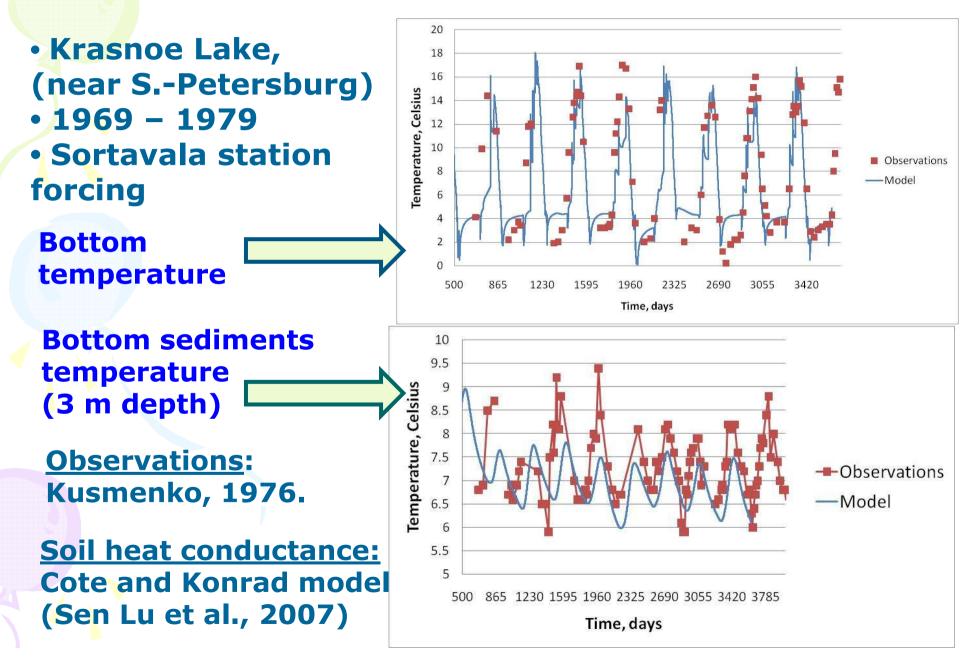
Heat equation

$$\frac{\partial T}{\partial t} = \frac{\partial}{\partial z} \left(k_T \frac{\partial T}{\partial z} \right) - \frac{1}{c_p \rho} \frac{\partial S}{\partial z} + \frac{1}{A} \int_{\Gamma_A} (\vec{u} \cdot \vec{n}) T dl$$

Momentum equations

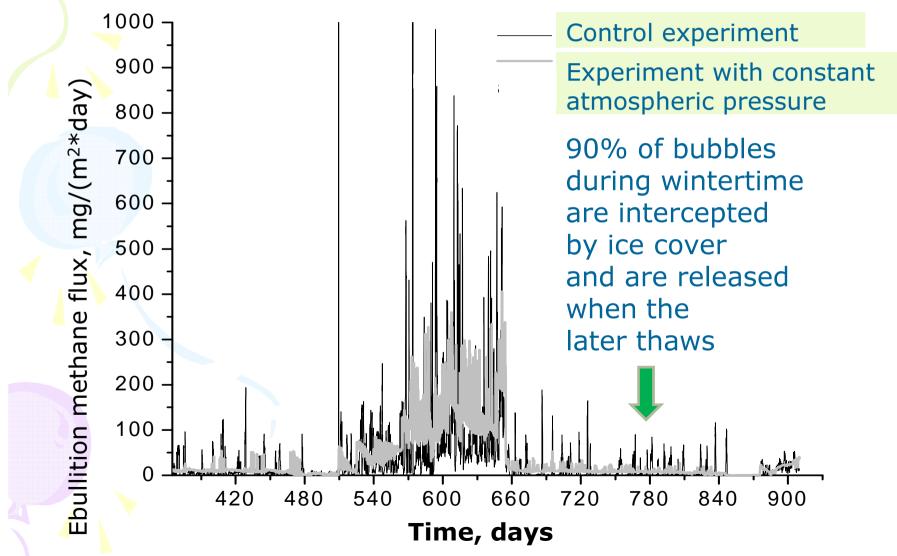
$$\frac{\partial u}{\partial t} = \frac{\partial}{\partial z} k_M \frac{\partial u}{\partial z} + fv - g \cdot \operatorname{tg} \alpha_x - C_{veg} u \sqrt{u^2 + v^2},$$
$$\frac{\partial v}{\partial t} = \frac{\partial}{\partial z} k_M \frac{\partial v}{\partial z} - fu - g \cdot \operatorname{tg} \alpha_y - C_{veg} v \sqrt{u^2 + v^2}$$

K-ε turbulence closure

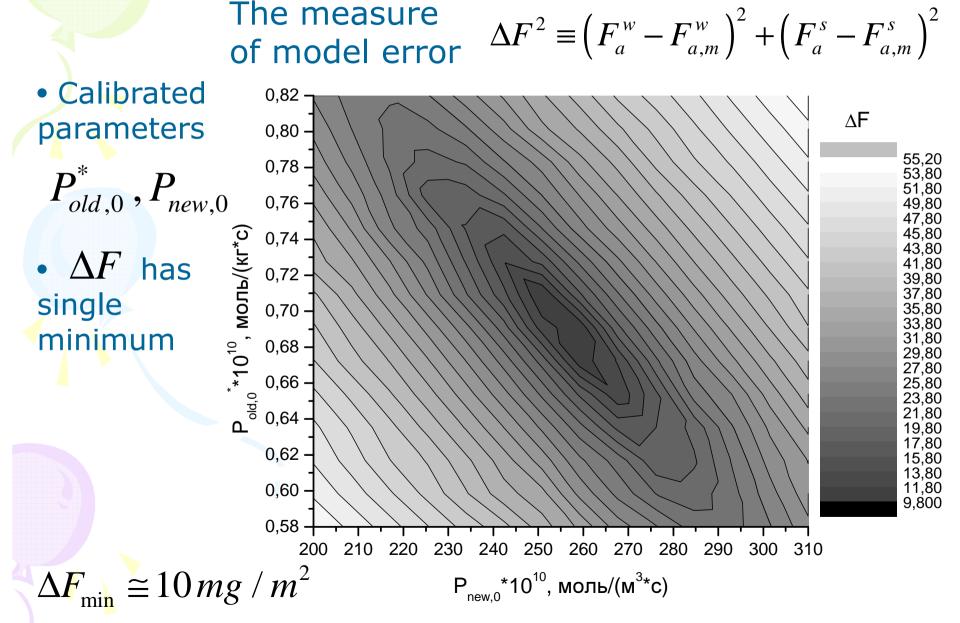

$$k_{M} = C_{e} \frac{E^{2}}{\varepsilon},$$

$$\frac{\partial E}{\partial t} = \frac{\partial}{\partial z} \left(\nu + \frac{k_{M}}{\sigma_{E}} \right) \frac{\partial E}{\partial z} + P + B - \varepsilon,$$

$$\frac{\partial \varepsilon}{\partial t} = \frac{\partial}{\partial z} \left(\nu + \frac{k_{M}}{\sigma_{\varepsilon}} \right) \frac{\partial \varepsilon}{\partial z} + \frac{\varepsilon}{E} \left(c_{1\varepsilon}P + c_{3\varepsilon}B - c_{2\varepsilon}\varepsilon \right)$$


$$\begin{array}{c|c} U & E_a \\ \hline \\ H,LE \\ \end{array} \begin{array}{c} E_s \\ F_s \\ \end{array} \end{array} \begin{array}{c} S \\ \hline \\ \end{array}$$

Validation: sediments temperature



Case study: Lake Shuchi

• Time series of atmospheric variables as input to lake model are extracted from ERA-Interim reanalysis

Model calibration: Lake Shuchi The measure $(T^{W}, T^{W})^{2} + (T^{S}, T^{S})^{2}$

Model validation

Observations: Lake Shuchi (K. Walter et al., 2006) hourly observations of ebullition and diffusion methane fluxes in different lake sections for 2003 – 2004

	Annual methane	A part of open-	A part of ice-
	emission,	▲	covered period
	mg/(m ² *yr)	emission, %	emission, %
Observations	22658	54	46
Model	22588	54	46

	Open water period	Ice-covered period
A part of young methane in	47	6
emissions (observations), %		
A part of young methane in net	61	32
generation (model), %		

Remarks on lake methane model

- The values of calibrated parameters depend on errors (<u>lack of observations!</u>) of input parameters: lake depth, water turbidity, atmospheric forcing, etc.
- The model should be verified on a significant number of thermokarst lakes
- The model still does not consider thermokarst lake development (deepening, drainage, etc.)

Perspectives

- Estimation of atmospheric methane balance at a regional scale using reanalysis and/or regional atmospheric modeling with satellite retrieval of atmospheric methane to assess intensity of surface sources
- Incorporation of lake methane model in regional and global climate models to assess regional feedback between climate change and thermokarst lakes and its global significance

Regional atmospheric model NH3D_MPI

U

70

Atmospheric 3D dynamics in σ-coordinates, methane transport and chemistry Land surface model of INM:

- 1. Soil (including permafrost) 2. Vegetation 3. Snow cover
- 4. Walter and Heimann methane model for bogs
- 5. A set of models for oxic soils carbon cycling

Snow

lce

H,LE \$\$ Es

Water

Soil

LAKE model with methane block

Peal E s

 horizontal spacing 1-10 km
 >30 levels in vertical
 parallel implementation using MPI